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             Why tides matter 

 

• The Moon is facing   

     Earth with one side 

 

• Mercury makes 3  

     sidereal rotations over  

     2 orbital revolutions  

     around the Sun   

     (discovered in 1965) 

 

• Tides play a crucial role in the dynamics of 

exoplanets (spin states, circularisation of orbits, 

tidal heating).  Thereby tides influence greatly 

these planets’ chances of being habitable.  
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Ocean tides and  

bodily tides 

Usually the concept of tides is 

associated with rising and 

webbing sea level due to the 

gravitational pull from the Moon 

and the Sun (ocean tides) 

 

It is harder to notice that the solid 

earth also bulks in response to 

this pull. 

 

The interior of Enceladus is 

constantly heated up, most likely 

by bodily tides, resulting in 

cryovolcanism and frequent 

resurfacing 

Enceladus 

Sun

Spr ing Tide

(Full Moon)

Spr ing Tide

(New Moon)

Neap Tide

(Quarter  Moon)

Neap Tide

(Quarter  Moon)
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The Moon is drifting 

away 

• The gravitational pull of the Moon 
generates a two-sided, symmetric 
bulge 

 

• The reaction is not instantaneous, but 
slightly delayed  (tidal lagging) 

 

• As the Earth is rotating faster than the 
Moon is orbiting it, the bulge is 
running ahead of the line of centres 

 

• The leading bulge generates an 
orbital torque in the same direction 
as the orbital motion of the Moon 

 

• As a result, the Moon accelerates and 
drifts away from the Earth (3.8 cm per 
year) 

Enceladus 

Earth

M oon
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Phobos is falling down 

• Mars is rotating slower than 

Phobos is orbiting it. Therefore, 

the tidal bulge is lagging behind 

the line of centres connecting 

the two bodies. 

 

• The lagging bulge generates an 

orbital torque in the opposite 

direction to the orbital motion of 

Phobos. 

 

• As a result, Phobos is slowing 

down and is falling onto Mars 

(~100 m per year) 

Enceladus 

M ars

Phobos
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The plethora of exoplanets 
• 840+ exoplanets detected, 2300+  candidates   

       from  Kepler  awaiting confirmation 

 

• Diversity of types: terrestrials, gas giants, ice giants, water worlds 

 

• The frequency of terrestrial planets in the habitable zone around 

FGK stars ~34 ± 14% (Traub 2012) – we may have 1010 habitable 

planets in the Milky Way alone 

 

• Orbital period distribution follows a power law, dN/dP ~ P-0.3, but it 

drops abruptly at P = 3 days – stars devour closer planets, which is a 

tidal “Mars+Phobos” effect 

 

• Planets’ spin is as important for habitability as stellar irradiation or 

orbital eccentricity – consider Mercurian day which is 176 Earth’s 

solar days 

 

Transits of exoplanets around Kepler 34 and 35, from Welsh et al 2012, Nature 481 
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WHAT WILL BE COVERED IN THIS LECTURE:

The way tides influence the spin of celestial bodies.

Specifically: Frequency-dependence of tidal torques.

Among other things, the shape of this dependence defines

the probabilities of capture into spin-orbit resonances.

These probabilities have ramifications for habitability:

you won’t feel comfortable on a planet, which is close to its star

and is always showing to the same side to the star.

A faster-spinning planet would have a more balanced climate.

WHAT WILL NOT BE COVERED:

Tidal evolution of orbits.

Tidal heating.
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STATIC TIDE

 

 

ѱ 

  Perturber creates potential W 

Distorted 

planet 

creates 

potential U 

 

 

 

We want 

to find U  

at  

 

TWO-STEP METHOD TO FIND U AT POINT r⃗ :

STEP 1. Take a point R⃗ on the planet’s surface, right beneath r⃗ .

Calculate the potential W created in R⃗ by the perturber:

W (R⃗, r⃗ ∗) =
∞∑
l=2

Wl(R⃗, r⃗
∗) where Wl(R⃗, r⃗

∗) ∝ Pl(cosψ)

STEP 2. Knowing the perturbing potential W in point R⃗ , calculate

the tidal-response potential U in the point r⃗ above R⃗ :

U(r⃗) =
∞∑
l=2

Ul(r⃗) where Ul(r⃗) = kl

(
R

r

)l+1

Wl(R⃗, r⃗
∗)

Sphere of density ρ, radius R, rigidity µ : the principal static Love number is

k2 =
3

2

1

1 + 19
2

µ
g ρR

=
3

2

1

1 + 57
8 π

1
Gρ2R2 J

.

where we switched to the compliance J ≡ 1/µ .

Similar formulae for all degrees l > 2 .
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ѱ 

  Perturber creates potential W 

Distorted 

planet 

creates 

potential U 

 

 

 

We want 

to find U  

at  

 

WHAT CAN WE GET FROM THESE FORMULAE?

W (R⃗, r⃗ ∗) =
∞∑
l=2

Wl(R⃗, r⃗
∗) , where Wl(R⃗, r⃗

∗) = − GMmoon

r ∗

(
R

r ∗

)l

Pl(cosψ) ,

U(r⃗) =
∞∑
l=2

Ul(r⃗) , where Ul(r⃗) = kl

(
R

r

)l+1

Wl(R⃗, r⃗
∗) .

WE CAN EXPRESS U VIA ORBITAL ELEMENTS OF r⃗ ∗
AND r⃗.

Insertion of Wl in Ul gives : Ul(r⃗) = −GMmoon kl
R

2l+1

r l+1 r ∗ l+1
Pl(cosψ) .

Express r⃗ , r⃗ ∗ through the Kepler elements:

r⃗ ∗ = ( a∗, e∗, i∗, Ω∗, ω∗, M∗ ) and r⃗ = ( a, e, i , Ω, ω, M ) .

Arrive at

U(r⃗) = −GMmoon

∞∑
l=2

l∑
m=0

∞∑
p=0

∞∑
q=−∞

kl ×

{
function of integers lmpq and the
Kepler elements of both r⃗ ∗and r⃗

}
Darwin (1879) derived a partial sum,1 Kaula (1964) wrote down the full series.

How does the perturber perturb itself by the tides it creates in planet?

Set r⃗ = r⃗ ∗ , obtain U(r⃗ ∗) . The resulting force will be central,

and the torque will be nil — which is natural for a static tide.

1 For introduction into Darwin’s method see Ferraz-Mello, Rodŕıguez, & Hussmann (2008).
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DYNAMICAL TIDE

 

 

 

ѱ 

 

 

When the orbital  

angular velocity  

of the perturber  

is faster than the  

planetary spin,  

the bulge falls behind. 
  

(The case of Phobos) 

The same problem, though now in motion:

The perturber produces potential W which now is time-dependent.

A wave of deformation circulates over the planet.

(In fact, many waves of various periods, as it will turn out.)

The so-deformed planet generates a time-dependent tidal potential U .

We want to find U in an exterior point r⃗.

(Of a special interest is the value of U in the point r⃗ = r⃗ ∗ where

the perturber is located. It will render us the tidal torque acting on

the perturber and the opposite torque acting on the planet.)

Have to extend Love’s solution to dynamical tides.
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How exactly did Love and Darwin treat the static case?

STEP 1 is easy. In an arbitrary point R⃗ on the planet’s surface, expand the

perturbing potential W over the Legendre polynomials:

W (R⃗, r⃗ ∗) =
∞∑
l=2

Wl(R⃗, r⃗
∗) ,

where

Wl(R⃗, r⃗
∗) = − GMmoon

r ∗

(
R

r ∗

)l

Pl(cosψ) , ψ =
̂

(R⃗ , r⃗ ∗)

STEP 2 Combine the constituency equation with the Second Law of Newton:

2 uβν = J σβν , /linear, isotropic material/ (1)

0 =
∂σβν
∂xν

− ρ
∂(W + U)

∂xβ
, (2)

where W =
∑
Wl and U =

∑
Ul ,

σβν , uβν are the stress and strain tensors, ρ is density, J is compliance.

(Compliance is inverse to rigidity J ≡ 1/µ .)

With boundary conditions, eqns (1) and (2) yield: Ul(r⃗) = kl

(
R
r

)l+1

Wl(R⃗) ,

where r⃗ is located right above R⃗, and the Love numbers are

k2 =
3

2

1

1 + 19
2

µ
g ρR

=
3

2

1

1 + 57
8π

1
Gρ2R2 J

, J ≡ 1/µ .

Similar formulae for kl with l > 2 .

What is different in dynamics?

(a) In (1), strain will lag behind stress, due to friction.

(b) In (2), we shall get acceleration and inertial forces.
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STATICS : 2 uβν = J σβν , (1)

0 =
∂σβν
∂xν

− ρ
∂(W + U)

∂xβ
. (2)

DYNAMICS : 2uγν(t) =

∫ t �
J (t− t′)σγν(t

′)dt′ , (1 ′ )

ρ üβ =
∂σβν
∂xν

− ρ
∂(W + U)

∂xβ
+ inert. forces (2 ′ )

SWITCH TO FOURIER IMAGES : σγν(t) =
∫∞
−∞ σ̄γν(ω) e

iωt
dω , etc.

NEGLECT ACCELERATIONS AND INERTIAL FORCES:

2 ūβν(ω) = J̄(ω) σ̄βν(ω) , (1 ′′ )

0 =
∂σ̄βν(ω)

∂xν
− ρ

∂
[
W̄ (ω) + Ū(ω)

]
∂xβ

, (2 ′′ )

Eqns (1 ′′ - 2 ′′ ) mimic (1 - 2). The solutions, too, should mimic one another:

Ūl(ω) = k̄l(ω)
(
R
r

)l+1

W̄l(ω) , (3)

where the complex Love numbers are

k̄2(ω) =
3

2

1

1 + 19
2
µ̄(ω)
g ρR

=
3

2

1

1 + 57
8π

1
Gρ2R2 J̄(ω)

, J̄(ω) ≡ 1/µ̄(ω) .

and similar formulae for all k̄l(ω) , l > 2 .
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FOUR CONCLUSIONS:

1. At each Fourier mode ω , the complex amplitudes Ū(ω) and W̄ (ω)

relate in the same algebraic manner as U and W in the static problem:

Ūl(ω) = k̄l(ω)

(
R

r

)l+1

W̄l(ω) (>)

where k̄
l
(ω) are expressed via J̄(ω) in the same algebraic way

as k
l

were expressed through J = 1/µ in statics:

k̄
l
(ω) =

3

2(l − 1)

1

1 +
3(2l2 + 4l + 3)

4lπGρ2R
2

J̄(ω)

2. For absolute values, (>) yields: | Ūl(ω) | = | k̄l(ω) |
(
R

r

)l+1

| W̄l(ω) | ,

so the absolute value | k̄
l
(ω) | plays the role of dynamical Love number.

3. Let ϵ
l
be the negative phase of the complex Love number:

k̄
l
(ω) = | k̄

l
(ω) | exp [− i ϵ

l
(ω) ] .

Then, for the phases of Ū(ω) and W̄ (ω) at each mode ω, eqn (>) yields:

ϕ
U
(ω) = ϕ

W
(ω)− ϵ

l
(ω)

Thus, the phase ϵ
l
(ω) of the Love number plays the role of the tidal lag.

4. Naturally, (>) also yields Ul(r⃗, t) =
(
R
r

)l+1 ∫ t

−∞ k̇l(t− t ′) Wl(R⃗ , r⃗ ∗, t ′) dt ′ ,

which is similar to the constitutive equation 2uβν(t) =
∫ t

−∞ J̇l (t− t ′) σβν(t
′) dt ′

connecting the present-time strain uβν(t) with the stress σβν(t
′) at t ′ ≤ t .
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Above we agreed that, at each Fourier mode ω , the complex amplitudes

Ū(ω) and W̄ (ω) relate in the same algebraic way as static U and W :

Ūl(ω) = k̄l(ω)

(
R

r

)l+1

W̄l(ω) (>)

where k̄
l
(ω) are expressed via J̄(ω) in the same algebraic way

as k
l

were expressed through J = 1/µ in statics:

k̄
l
(ω) =

3

2(l − 1)

1

1 +
3(2l2 + 4l + 3)

4lπGρ2R
2

J̄(ω)

(>>)

WE NEED TO FIND THE NEGATIVE IMAGINARY PART OF THE

COMPLEX LOVE NUMBER k̄l(ω) , BECAUSE IT WILL

SHOW UP IN A FORMULA FOR THE TIDAL TORQUE.

TURN -OF -THE -CRANK METHOD :

1. Grab any rheology J̄(ω) , plug it in (>>), get k̄l(ω) .

[ Recall that J̄(ω) is the Fourier transform of the kernel J̇l (t−t ′) of the operator

2uβν(t) =
∫ t

−∞ J̇l (t− t ′)σβν(t
′) dt ′. So J̄(ω) contains all info on rheology. ]

2. From k̄l(ω) , get its negative imag. part kl(ω) sin ϵl(ω) = −Im
[
k̄l(ω)

]
.
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STRATEGY FOR CALCULATION OF THE TIDAL TORQUE:

I TAKE U(r⃗) AT THE PERTURBER ’ S LOCATION r⃗ = r⃗ ∗

RECALL WHAT WE HAD IN STATICS :

U(r⃗) = −GMmoon

∞∑
l=2

l∑
m=0

∞∑
p=0

∞∑
q=−∞

kl ×

{
function of integers lmpq and the
Kepler elements of both r⃗ ∗and r⃗

}
where kl was the static Love number.

IN DYNAMICS , THIS SERIES BECOMES A FOURIER ONE :

U(r⃗) = −GMmoon

∞∑
l=2

l∑
m=0

∞∑
p=0

∞∑
q=−∞

kl cos ϵl ×

{
function of integers lmpq and the
Kepler elements of both r⃗ ∗and r⃗

}

An lmpq term corresponds to Fourier mode ωlmpq = (l − 2p+ q)n−m
�
θ

/ n and
�
θ being the mean motion and spin rate / ,

while kl cos ϵl = kl(ωlmpq) cos ϵl(ωlmpq) = Re
[
k̄l(ωlmpq)

]

I FROM THAT, GET THE TORQUE ACTING ON PERTURBER

I AN EQUAL BUT OPPOSITE TORQUE IS ACTING ON PLANET

T = T
secular

+ T
oscillating

T
secular

= −GMmoon

∞∑
l=2

l∑
m=0

∞∑
p=0

∞∑
q=−∞

kl sin ϵl ×

{
function of integers lmpq and the
Kepler elements of both r⃗ ∗and r⃗

}
where

kl sin ϵl = kl(ωlmpq) sin ϵl(ωlmpq) = − Im
[
k̄l(ωlmpq)

]
This is why we were so eager to find the complex Love number k̄l(ω) !!

Without a link to rheology, T
secular

was written down by Goldreich (1966).

It is very common to misidentify kl with the static Love number,
and equally common to misidentify sin ϵl with the inverse seismic Q factor.

Goldreich (1963) warned against the latter, but his admonition went unnoticed.
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To study tidal despinning of bodies, and to model their entrapment

into spin-orbit resonances, we need to know the tidal torque

T
secular

=
∞∑
l=2

l∑
m=0

∞∑
p=0

∞∑
q=−∞

. . . kl(ωlmpq) sin ϵl(ωlmpq) ,

Hence the need to know the functions | k̄
l
(ω) | sin ϵ

l
(ω) = −Im

[
k̄

l
(ω)

]
,

where k̄
l
(ω) =

3

2

1

1 +
3(2l2 + 4l + 3)

4lπGρ2R
2

J̄(ω)

and ω = ωlmpq

COMPETITION: Self-gravitation versus Rheology, i.e.,

1 versus
3(2l2 + 4l + 3)

4lπGρ2R
2

J̄(ω)

If not for this “1”, then:

– our k̄l(ω) would mimic J̄(ω),

– tidal lags ϵl would coincide with the seismic lag δ,

– all the tidal factors
kl(ω)
Ql(ω)

Sgn(ω) = | k̄l(ω) | sin ϵl(ω) = −Im
[
k̄l(ω)

]
would mimic their seismic counterpart 1/Q(ω) = sin δ(ω) = −Im

[
J̄(ω)

]
So this “1” term

– reflects the (self-gravity-caused) difference between the tidal and seismic dis-
sipation,

– guarantees that kl(ω)/Ql(ω) smoothly goes through nil when ω does so (cross-
ing of a resonance)

– excludes any possibility of discontinuity in k̄(ω) and kl(ω)/Ql(ω), no matter
what rheology we choose. 2

2 From time to time, different authors claim that “bad rheologies” render discontinuities

in
k

l
(ω)

Q
l
(ω)

at ω → 0 . Discontinuities stem not from “bad” rheologies but from bad math.
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| k̄l(ω) | sin ϵl(ω) = −Im
[
k̄l(ω)

]
is often denoted as

kl(ω)
Ql(ω)

Sgn(ω) ,

where 1
Ql (ω)

≡ sin |ϵl(ω)| .

( Use Ql , not Q . Simply Q is the seismic factor. They differ at low ω . )

For any realistic rheology J̄(ω) , the resulting
kl(ω)
Ql(ω)

Sgn(ω)

has the shape of a kink:

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.10

-0.05

0.00

0.05

0.10

tidal mode Ω

-
k l
HΩ
L

si
n
Ε

lH
Ω
L

Each lmpq term of the tidal torque has this shape,

because it contains a factor
k
l
(ω)

Q
l
(ω)

Sgn(ω) = | k̄
l
(ω) | sin ϵ

l
(ω) ,

where ω = ωlmpq = (l − 2p + q)n − m
�
θ .

Resonances are crossed smoothly:

as ω = ω
lmpq

transcends zero, so does | k̄
l
(ω) | sin ϵ

l
(ω).

The central slope is steep but continuous, for any realistic rheology.

The above figure corresponds to the Maxwell body.

A very different rheology in Ferraz Mello arXiv:1204.3957 yields a similar shape.
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The lmpq term of the tidal torque contains the kink

| k̄
l
(ω) | sin ϵ

l
(ω) = | k̄

l
(ωlmpq) | sin ϵl(ωlmpq) ,

where the Fourier modes are ω
lmpq

= (l − 2p + q)n−m
�
θ .

Thus each term is a function of the spin rate
�
θ .

So the overall torque can be treated as a function of
�
θ :

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

-0.10

-0.05

0.00

0.05

0.10

rate of rotation Θ
 
�n

an
gu

la
r

ac
ce

le
ra

tio
n
Θ..

yr
-

2

The peaks look sharp, but in fact they are continuous,

i.e., with no singularity.

The central slope is slightly inclined, not vertical.
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The right half of the kink, taken with an opposite sign and in a loga-

rithmic scale (Efroimsky CMDA 2012):

−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

lg χ

lg
(−

k 2 s
in

 ε
2),

   
lg

(k
2 c

os
 ε

2),
   

lg
(k

2)

 

 
lg(−k

2
 sin ε

2
)

lg(k
2
 cos ε

2
)

lg(k
2
)

The argument χ ≡ |ω | is the physical forcing frequency of the tidal

stress in the mantle.

—– the frequency-dependence of the Love

number k2(ω) ≡ | k̄2(ω) |

—– the frequency-dependence of its real part

k2(ω) cos ϵ2(ω) = | k̄2(ω) | cos ϵ2(ω)

—– the frequency-dependence of its imaginary

part: − k2(ω) sin ϵ2(ω) = − | k̄2(ω) | sin ϵ2(ω)

At what frequencies are the peaks located?
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.10

-0.05

0.00

0.05

0.10

tidal mode Ω

-
k l
HΩ
L

si
n
Ε

lH
Ω
L

Maxwell time: τ
M
= η/µ . Love numbers:

k
l
=

3

2(l − 1)

1

1 + A
l

, A
l
=

3(2l2 + 4l + 3)µ

4lπGρ2R2 .

For a homogeneous near-spherical Maxwell body:

ω
peak

= ± 1
τ
M
A
l
= ± 4lπGρ2R

2

3(2l2+4l+3) η
,

with no rigidity dependence.

For l = 2 : ω
peak

= ± 1
τ
M
A2

= ± 8πGρ2R
2

57 η ,

G is the Newton gravity constant,

η is the viscosity.

Now, the Moon.

Williams et al (2001, 2008) fit the data to Q ∼ χ
p
. In reality, this

was, of course, Q/k2 , because in the tidal context k2 and Q = Q2 are

inseparable.
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Write the scaling law as
k2
Q2

= k2 sin |ϵ2| ∼ χ
− p

.

Williams et al (2008): the slope is almost nil, just a tiny bit on the

negative side: p = − 0.09 .

Slightly to the left of the peak

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.10

-0.05

0.00

0.05

0.10

tidal mode Ω

-
k l
HΩ
L

si
n
Ε

lH
Ω
L

The LLR tidal frequencies were ≈ month
−1
, so

month
−1 ≈ ω

peak
= 1

τ
M
A2

= 8πGρ2R
2

57 η

Were the Moon homogeneous, it would have

η = 3 × 10
15

Pa s

(Partial melt in the low mantle?)
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The positive-frequency half of the kink, taken with an

opposite sign and in a logarithmic scale,

for telluric objects of various sizes (Efroimsky ApJ 2012)

−20 −15 −10 −5 0 5 10 15
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

lg χ

lg
(k

2 s
in

 ε
2)

 

 
Iapetus
Mars
Earth
Superearth
Larger Superearth

χ ≡ |ω | — the positive-definite physical forcing frequency.

If superearths with R > 4R
Earth

exist,

their plots will be well below that of an earth,

because their k2(ω) sin | ϵ2(ω) | is much lower due to self-gravitation:

self-gravitation acts as extra rigidity,
suppressing the bulges.

Spin-orbit interactions of such planets will be suppressed accordingly.
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GJ 581d 
One of the best  

candidates  

for habitability 

 

Orbits a nearby  

M dwarf with  

a period of 67 days 

 

The system has   

only  4 planets   

(Makarov  et al.     

 2012) 

 

Integration shows 

that the system is  

dynamically long- 

term stable but  

strongly chaotic.  

 

The Lyapunov  time                                                  
for planet d is  ~30 yr 

 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

time  yr

GJ 581 d integrated for 10000 years

 

 

semimajor axis  AU

eccentricity

Semimajor axis of GJ 581d is almost constant,  

eccentricity varying only slightly 
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Parameters of GJ 581d: 

data and educated guess 

  

 

 

 

 The moment of inertia coefficient 

 The radius of the planet 

 The coefficient of triaxiality 

The Maxwell time 

 The unrelaxed rigidity modulus 

 The Andrade parameter 
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GJ 581d can be captured  

in a high-order resonance 

(higher than Mercury) 

 
Tidal torque kink barely  

crosses  0  at  /n = 5/2  

Capture of GJ 581d into 5:2 resonance 

GJ 581d traverses 5:2 resonance 

From:  

Makarov, Berghea  

& Efroimsky (2012) 
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Probabilities of capture 
Sensitive to the Maxwell time, i.e., to the temperature. 

 

Less sensitive to triaxiality (B-A)/C 

 

For e=0.27, the most probable state of GJ 581d is 2:1 . 

This improves the chances for habitability 

Probabilities of capture of a warm  

GJ 581d  (Maxwell time = 50 yr) 

Probabilities of capture of a cold  

GJ 581d  (Maxwell time = 500 yr) 
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