XVI Colóquio Brasilérợ̛̀e Dinâmica Orbital

This study aims to perform the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by the four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The torques that we have been considered are the Gravity Gradient (GGT) and The Direct Solar Radiation Pressure (DSRPT). Equilibrium points are obtained through numerical simulations using the softwares MATLAB and OCTAVE, which are then analyzed by the Routh-Hurwitz Stability Criterion.

Attitude Quaternions and Rotational Motion Equations

$$
\begin{aligned}
& \text { Motion Equations }
\end{aligned}
$$

Kinematic Equations [2]

$\dot{q}_{1}=0.5\left[p q_{4}-q q_{3}+r q_{2}\right]$
$\dot{q}_{2}=0.5\left[q q_{4}-r q_{1}+p q_{3}\right]$
$\dot{q}_{3}=0.5\left[r q_{4}-p q_{2}+q q_{1}\right]$
$\dot{q}_{4}=-0.5\left[p q_{1}+q q_{2}+r q_{3}\right]$

Euler Equations [3]

$I_{x} \dot{p}=M_{x}+\left(I_{y}-I_{z}\right) q r$
(3) $I_{y} \dot{q}=M_{y}+\left(I_{z}-I_{x}\right) p r$
(4)

Gravity Gradient Torque
Gravity Gradient Elementar Force over an infinitesimal area element (dS) of the satellite surface, is given by [1, 2]:

$$
d \vec{F}=-\mu d m \frac{\overrightarrow{r_{T}}}{r_{T}^{3}}
$$

Gravity Gradient Torque over an infinitesimal area element (dS) of the satellite surface, is given by:

$$
\begin{equation*}
d \vec{N}_{G}=\vec{r}_{0} \times d \vec{F} \quad \longrightarrow \quad \vec{N}_{\mathrm{G}}=3 \frac{\mu}{r^{3}}\left[a_{21} a_{31}\left(I_{z}-I_{y}\right) \hat{i}_{z}+a_{11} a_{31}\left(I_{x}-I_{z}\right) \hat{j}_{g}+a_{11} a_{21}\left(I_{z}-I_{x}\right) \hat{k}_{z}\right] \tag{6}
\end{equation*}
$$

Fig. 1: Relations between the mass elements of the satellite and the Earth, being the satellite center of mass position vector related to the Earth center of ma \vec{i}_{0} and the unit vector in its direction.

Solar Radiation Torque (SRT)
Solar Radiation Pressure Elementar Force over an infinitesimal area element (dS) of the satellite surface [4]:

$$
\begin{equation*}
d \vec{F}=-\frac{\bar{K}}{R^{2}}\left\{\left[\frac{2 \gamma}{3}(1-\beta) \cos \theta_{p}+4 \beta \gamma \cos ^{2} \theta_{p}\right] \hat{n}+\left[\left(1-\beta_{\gamma}\right) \cos \theta_{p}\right] \hat{\lambda}\right\} d S \tag{7}
\end{equation*}
$$

Direct Solar Radiation Pressure Torque over an infinitesimal area element (dS) of the satellite surface:
$d \vec{N}=\vec{r} \times d \vec{F}$
(8)

Fig. 2: Solar radiation incidence over $d S[5]$

Fig. 3: $C M$ and $d S$ positions related to the Sun [6]

Fig. 4: Vectors arrangement connecting the satellite, the Earth and the Sun [6]
$N_{x}=-\frac{\bar{K}}{R^{4}}\left(\beta_{1} \gamma_{1}-\beta_{2} \gamma_{2}\right) \frac{h}{2} \pi \sigma^{2} G_{1}$
$N_{y}=-\frac{\bar{K}}{R^{4}}\left(\beta_{1} \gamma_{1}-\beta_{2} \gamma_{2}\right) \frac{h}{2} \pi \sigma^{2} G_{2}$
$N_{z}=0$

The Routh-Hurwitz Criterion allows to investigate the absolute stability of a system of equations using the coefficients of the characteristic equation associated with the linearized system, without the need to determine the roots of the characteristic equation. [7, 8]. $\quad a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots .+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0$

-The main significance of this work is due to the use of quaternions in determining the SRT components and in a preliminary analysis of stability. Previous works used Andoyers variables and Euler angles.

- The approach taken can be improved when in the stability analysis are included other environmental torques as a mean to obtain a better representation of the real behavior of the satellite, and also to introduce the Shadow Function in the DSRPT model.
- Other methods of stability analysis can also be used as the Method, the Liapunov Direct Method and the Kovalev SavchenkoStability Theorem [9,10].
-The latter method requires the determination of the equations of motion in its canonical form, and it is therefore also a challenge to obtain the canonical form for these equations of the quaternions.
- The approach taken here is applyed to satellites with cylindrical form in the iluminated phase of the trajectory. It can be useful for analyzing the stability of future missions of the References
[1] M.C. Zanardi, "Dinâmica da atitude de satélites artificiciais". Tese de Livre Docência, UNESP, Guaratinguetá, 2005. [2] [1] M.C. Zanardi, "Dinâmica da atitude de satelites artiiciais. Tese de Livre Docencia, UNESP, Guaratinguetá, 2005. [2] "Spacecraft Attitude C. Moore, "Fundamentals of Space Systems". Oxford Univ. Press, New York, 1994. [3] J.R. Wertz, "Spacecraft Attitude Determination and Control", Reidel Publ. Comp., London, 2003. [4] M.C. Zanardi and R. Vilhena de Moraes, "Analytical and Semi-Analytical Analysis an Artificial Satellite's Rotational Motion". Cel. Mech. \& Dyn. Astr., v. de Curso, UNESP, Guaratinguetá, 2002. [6] G.B. Motta, "Satélites estabilizados por rotação e Torque de Radiacã̃o de Curso, UNESP, Guaratingueta, 2002. [6] G.B. Motta, "Satelites estabilizados por rotação e Torque de Radiação Solar Direta ". Trabalho de Conclusao de Curso, UNESP, Guaratingueta, 2011. [7] K. Ogata, "Engenharia de Controle",
Prent. Hall do Brasil, 2^{g} Ed., Rio de Janeiro, 1993. [8] J.C. Santos, "Análise da estabilidade do movimento rotacional de satélites artificiais com quatérnios e sujeitos à torques externos". Trabalho de Conclusão de Curso, UNESP, Guaratinguetá, 2011. [9] A.M. Kovalev and A. Savchenko, "Stability of uniform rotations of a rigid body about a principal axis". PMM Journal., v. 39, n. 4, pp. $650-660,1975$. [10] W.R. Silva, "Estudo da Estabilidade do Movimento Rotaciona de Satelites Artificiais com Variáveis Canônicas". Exame de Qualificacão de Mestrado. UNESP, Guaratinguetá, 2011.

Acknowledgments:

