Polymorphisms and adiabatic chaos

D.Treschev

Steklov Mathematical Institute, and Moscow State University, Moscow, Russia

Motivation

Consider the Hamiltonian system ($1+1 / 2$ dof $)$

$$
\dot{x}=\partial H / \partial y, \quad \dot{y}=-\partial H / \partial x, \quad H=H(x, y, \varepsilon t)
$$

H is periodic in $\tau=\varepsilon t, \varepsilon \ll 1$.
The action in the frozen system

$$
I=I(H, \tau)=\text { area inside the curve } H=\mathrm{const}
$$

is an adiabatic invariant. It is smooth outside the separatrix and discontinuous on the separatrix.

$$
\Delta I \sim \varepsilon \quad \text { when } \Delta t \sim 1 / \varepsilon
$$

and the trajectory does not cross the separatrix.
We assume that for any fixed τ the level lines of H (the phase portrait of the "frozen system") are as in the figure.

Figure 1: Phase portraits of the "frozen" system
Let $A_{+}(\tau), A_{-}(\tau)$, and $A_{0}(\tau)=A_{+}(\tau)+A_{-}(\tau)$ be the areas of the upper, lower loop and the total area of the separatrix.
The initial value $I\left(\tau_{1}\right)$ lies in one of 3 intervals:

$$
\Lambda_{+}=\left[0, A_{+}\left(\tau_{1}\right)\right], \quad \Lambda_{-}=\left[0, A_{-}\left(\tau_{1}\right)\right], \quad \Lambda_{0}=\left[A_{0}\left(\tau_{1}\right), C\right] .
$$

We start from $\tau=\tau_{1}, I=\hat{I}:=I\left(\tau_{1}\right)$ outside the separatrix. For $\tau=\tau_{2}$ the area $A(\tau)$ inside the separatrix can become equal to \hat{I}. Then for $\tau>\tau_{2}$ we fall into one of the separatrix loops.
Into which one? For $\varepsilon \rightarrow 0$ the answer is: to the upper one with the probability

$$
p=p\left(\tau_{2}\right)=\frac{A_{+}^{\prime}\left(\tau_{2}\right)}{A_{+}^{\prime}\left(\tau_{2}\right)+A_{-}^{\prime}\left(\tau_{2}\right)}
$$

and to the lower one with the probability $1-p$. (This is true if $A_{ \pm}^{\prime}\left(\tau_{2}\right) \geq 0$, otherwise p equals 0 or 1 .) At this time moment I jumps, and then it again approximately preserve.
Then the area $A_{ \pm}$of the loop in which we were captured decreases and at some time moment $t=\varepsilon \tau_{3}$ the trajectory leaves the loop with $I \approx A_{0}\left(\tau_{3}\right)$ or $A_{\mp}\left(\tau_{3}\right)$. The time τ_{3} depends on the loop at which we were captured.
When the period passes, I takes some values $\hat{I}_{1}, \hat{I}_{2}, \ldots$ with probabilities p_{1}, p_{2}, \ldots

We obtain the multivalued map $T: \Lambda \rightarrow \Lambda$, where Λ is the disjoint union of Λ_{+}, Λ_{-}, and Λ_{0}.

$$
T(\hat{I})=\hat{I}_{j} \quad \text { with probability } p_{j}
$$

Remark. If we have a symmetry (areas of the two separatrix loops are the same) then $\hat{I}_{j} \approx I_{1}$ for all j.
Because of periodicity in τ we deal with iterations of T. This dynamical system preserves the standard Lebesgue measure on the interval Λ. This means that the system is a polymorphism.
Such systems are expected to have generically strong ergodic properties which implies a fast stochastization in the original Hamiltonian system.

Multivalued self-maps of an interval

Let the interval $[0,1]$ be presented as the union

$$
[0,1]=\cup_{j=1}^{J} I_{j}, \quad I_{j}=\left[a_{j}, b_{j}\right]
$$

The intervals I_{j} can have non-trivial pairwise intersections. For example, it can happen that all I_{j} equal $[0,1]$. For any j consider the functions

$$
\varphi_{j}: I_{j} \rightarrow[0,1], \quad p_{j}: I_{j} \rightarrow[0,1]
$$

For any $x \in[0,1]$ we put

$$
V(x)=\left\{j: x \in I_{j}\right\}
$$

We assume that the following conditions hold.
P. (Probability) $\sum_{j \in V(x)} p_{j}(x)=1$ for any $x \in[0,1]$.
M. (Monotonicity) The functions φ_{j} are strictly monotone on I_{j}.

According to \mathbf{M} there exist the inverse functions $\psi_{j}=\varphi_{j}^{-1}$.
Consider the following dynamical system T on $[0,1]$. Any point $x \in I_{j}$ is mapped to $\varphi_{j}(x)$ with probability p_{j}. We denote $T=$ $\left(\varphi_{1}, \ldots, \varphi_{J} ; p_{1}, \ldots, p_{J} ; I_{1}, \ldots, I_{J}\right)$ or shorter, $T=(\varphi ; p ; I)$.

The Perron-Frobenius operator

Consider the space $L_{2}=L_{2}([0,1], d x),\langle$,$\rangle denotes the corre-$ sponding scalar product and $\|\cdot\|$ the L_{2}-norm.
In a standard way we define the map

$$
W_{T}: L_{2} \rightarrow L_{2}, \quad f \mapsto W_{T} f
$$

For any $y \in[0,1]$ we put

$$
U(y)=\left\{j: y \in \varphi_{j}\left(I_{j}\right)\right\} .
$$

Then $\left\{\psi_{j}(y): j \in U(y)\right\}$ is the set of all preimages of the point y with respect to T. By definition

$$
W_{T} f(y)=\sum_{j \in U(y)} p_{j} \circ \psi_{j}(y)\left|\psi_{j}^{\prime}(y)\right| f \circ \psi_{j}(y)
$$

For any measurable set $\Omega \subset[0,1]$ we have:

$$
\int_{\Omega} W_{T} f(y) d y=\sum_{j=1}^{J} \int_{\varphi_{j}^{-1}(\Omega)} p_{j}(x) f(x) d x
$$

The positive cone

$$
L_{2}^{+}=\left\{\rho \in L_{2}: \rho \geq 0\right\}
$$

can be associated with the space of densities of measures on $[0,1]$. We have the obvious inclusion

$$
W_{T}\left(L_{2}^{+}\right) \subset L_{2}^{+}
$$

If $\rho \in L_{2}^{+}$, and $\rho=W_{T} \rho$, the measure $\nu, d \nu=\rho d x$ is said to be invariant w.r.t. T.

Polymorphisms

We assume that the Lebesgue measure is invariant with respect to T.
L. (Lebesgue) $W_{T} 1=1$.

Any map $(\varphi ; p ; I)$, satisfying \mathbf{P}, \mathbf{M}, and \mathbf{L}, will be said to be a polymorphism. A polymorphism can be regarded as a multivalued self-map of an interval preserving the Lebesgue measure.

Vershik construction

According to A.M.Vershik a polymorphism is the ordered diagram

$$
\left([0,1]_{x}, d x\right) \stackrel{\pi_{x}}{\longleftrightarrow}\left([0,1]_{x} \times[0,1]_{y}, \nu\right) \xrightarrow{\pi_{y}}\left([0,1]_{y}, d y\right),
$$

where π_{x} and π_{y} are projections to the x and y component of the product $[0,1]_{x} \times[0,1]_{y}$ and ν is a probability measure such that

$$
\begin{equation*}
\pi_{x} \nu=d x \quad \text { and } \quad \pi_{y} \nu=d y \tag{1}
\end{equation*}
$$

From the dynamical viewpoint a polymorphism maps randomly any measurable set $\Lambda \subset[0,1]_{x}$ to the interval $[0,1]_{y}$ so that the probability of a measurable set $\Omega \subset[0,1]_{y}$ equals $\nu(\Lambda \times \Omega)$.

The following construction shows a connection between the presented two definitions of a polymorphism. Suppose that $(\varphi ; p ; I)$ is a polymorphism in the sense of our definition. Let ν be the following measure, supported on the graphs of the functions φ_{j}. For any $S \subset[0,1] \times[0,1]$ let $\chi_{S}:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be its indicator:

$$
\chi_{S}(x, y)= \begin{cases}0 & \text { if }(x, y) \notin S \\ 1 & \text { if }(x, y) \in S\end{cases}
$$

Then by definition

$$
\nu(S)=\sum_{j=1}^{J} \int_{I_{j}} p_{j}(x) \chi_{S}\left(x, \varphi_{j}(x)\right) d x
$$

We have an obvious
Proposition 1 The measure ν satisfies (1).

An adjoint polymorphism

For any polymorphism $T=(\varphi ; p ; I)$ we put

$$
K_{j}=\varphi_{j}\left(I_{j}\right), \quad q_{j}(x)=p_{j} \circ \psi_{j}(x)\left|\psi_{j}^{\prime}(x)\right|
$$

Proposition $2(\psi ; q ; K)$ is a polymorphism.
Proof. $(\psi ; q ; K)$ is obtained from $(\varphi ; p ; I)$ if in the Vershik diagram we exchange left and right.
We say that $(\psi ; q ; K)$ is adjoint to $T:(\psi ; q ; K)=T^{*}$. Obviously $T^{* *}=T$.

Proposition $3 W_{T^{*}}=W_{T}^{*}$.
Corollary 1 For any polymorphism T we have: $W_{T}^{*} 1=1$.
W_{T} is a Markov (bistochastic) operator i.e.,
(1) $W_{T}\left(L_{2}^{+}\right) \subset L_{2}^{+}$,
(2) $W_{T} 1=W_{T}^{*} 1=1$.

Mixing and ergodicity

Definition. The polymorphism T is said to be ergodic if any fixed point of W_{T} is a constant.

The polymorphism T is said to be mixing if for any $f \in L_{2}$ $W_{T}^{n} f \rightarrow \bar{f}=\langle 1, f\rangle \quad$ in the weak L_{2}-topology as $n \rightarrow \infty$.

If T is mixing, it is ergodic.
If T is mixing, T^{*} is also mixing. Indeed,

$$
\left\langle W_{T}^{n} f, \varphi\right\rangle \rightarrow \bar{f} \bar{\varphi} \text { for any } f, \varphi \Longleftrightarrow\left\langle\left(W_{T}^{*}\right)^{n} f, \varphi\right\rangle \rightarrow \bar{f} \bar{\varphi} \text { for any } f, \varphi \text {. }
$$

An example

The map $T=(\varphi, p)$, where
$J=1, \varphi(x)=2 x \bmod 1, p=1$ is a polymorphism because φ preserves the Lebesgue measure.
The adjoint polymorphism $T^{*}=\left(\varphi_{1}, \varphi_{2} ; 1 / 2,1 / 2\right)$, see the figure:

$W_{T^{*}}$ acts as shown in the figure $\Rightarrow T^{*}$ is mixing.

Some non-mixing polymorphisms

Consider polymorphisms T with

$$
I_{1}=\ldots=I_{J}=\varphi_{1}\left(I_{1}\right)=\ldots=\varphi_{J}\left(I_{J}\right)=[0,1]
$$

In this case we use the shorter notation $T=(\varphi ; p)$.
Example $1 \operatorname{Let} T=\left(\varphi_{1}, \varphi_{2} ; p_{1}, p_{2}\right)$ be a polymorphism such that the functions φ_{1}, φ_{2} are increasing and for some $x_{0} \in(0,1)$ $\varphi_{1}\left(x_{0}\right)=x_{0}$. Then $\varphi_{2}\left(x_{0}\right)=x_{0}$ and the intervals $\left[0, x_{0}\right]$ and $\left[x_{0}, 1\right]$ are invariant.

Proposition 4 There exist $f, p:[0,1] \rightarrow[0,1]$ such that
a. $f \in C^{\infty}([0,1])$,
b. $f(x)<x$ for any $x \in(0,1)$,
c. $f(0)=0, f(1)=1$,
d. $\left.f^{\prime}\right|_{[0,1]}>0$,
e. $0<p(x)<1$ for any $x \in(0,1)$,
f. $\left(f, f^{-1} ; p, 1-p\right)$ is a polymorphism.

The polymorphism $\left(f, f^{-1} ; p, 1-p\right)$ is not ergodic.
Indeed, let $[\alpha, \beta)$ be a "fundamental" semi-interval i.e.,

$$
\begin{gathered}
f^{n}([\alpha, \beta)) \cap f^{m}([\alpha, \beta))=\emptyset \quad \text { for all integer } m \neq n, \\
\text { and } \quad \cup_{n \in \mathbb{Z}} f^{n}([\alpha, \beta))=(0,1)
\end{gathered}
$$

For any $\rho_{0} \in L_{2}([0,1]), \operatorname{supp} \rho_{0} \subset[\alpha, \beta]$ obviously

$$
\rho:=\sum_{n=-\infty}^{\infty} \rho_{0} \circ f^{n} \in L_{2}([0,1]) \quad \text { and } \quad W_{T} \rho=\rho
$$

Theorem 1 Let $T=(\varphi ; p)$ be an ergodic polymorphism such that $p_{j} \circ \psi_{j}(x) \psi_{j}^{\prime}(x)>c_{0}>0(1 \leq j \leq J)$ and the functions $h_{j k}=\psi_{j} \circ \varphi_{k}$ satisfy conditions (i)-(iii) (see below). Then T is mixing.
(i) $h:[0,1] \rightarrow[0,1]$ is smooth of piecewise smooth, $h(0)=0$, $h(1)=1$, and both right and left derivatives $h^{\prime}>0$ on $[0,1]$,
(ii) the function $h(x)-x$ does not have zeros on $(0,1)$,
(iii) $\lim _{x \rightarrow 0} h^{\prime}(x)=\lambda_{0}, \lim _{x \rightarrow 1} h^{\prime}(x)=\lambda_{1}$, where

$$
0<\lambda_{0}<1<\lambda_{1} \quad \text { or } \quad 0<\lambda_{1}<1<\lambda_{0} .
$$

Typical functions h, satisfying (i)-(iii) are presented on the figure:

Figure 2: The functions φ_{1} and φ_{2}.
Polymorphisms $T_{\beta, s}$
$T_{\alpha, \beta, s}=\left(\varphi_{1}, \varphi_{2} ; p, 1-p\right), s \in(0,1), \quad 0<\beta<\alpha<1 / s$.
Theorem $2 T_{\alpha, \beta, s}$ is ergodic.

Typical singularities

Theorem 3 Typical singularities of an "adiabatic" polymorphism are of 3 types:
(1) Singularities of "joints",
(2) T-crossing,
(3) 3 rays.

Figure 3: Singularities of types (2) and (3)

Figure 4: Example: functions A_{+}, A_{-}, A_{0}

Figure 5: Example: the corresponding polymorphism

References

[1] Vershik A.M. Multivalued mappings with invariant measure (polymorphisms) and Markov operators. Zap. Nauchn. Semin. LOMI, 72 (1977), 26-61 in Russian. English transl. in J. Sov. Math., 23 (1983), 2243-2266.
[2] Vershik A.M. Polymorphisms, Markov processes, and quasisimilarity. DCDS 13 (2005), no.5, 1305-1324.
[3] Neishtadt A., Treschev D., Polymorphisms and adiabatic chaos, Ergodic Theory Dynam. Systems, 31:1 (2011), 259284
[4] Golubtsov, P.E., An example of piecewisely-linear polymorphism, Math. Notes, $91: 3$ (2012), 323330
[5] Golubtsov, P.E., Typical singularities of polymorphisms generated by the problem of destruction of an adiabatic invariant. to appear in Reg. Chaot. Dyn.

