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Motivation
Consider the Hamiltonian system (1 + 1/2 dof)

t=0H/0y, y=—-0H/0xr, H = H(z,y,ct),

H is periodic in 7 = ¢t, € < 1.
The action in the frozen system

I = I(H,T) = area inside the curve H = const

is an adiabatic invariant. It is smooth outside the separatrix and
discontinuous on the separatrix.

Al ~ ¢ when At ~ 1/¢
and the trajectory does not cross the separatrix.

We assume that for any fixed 7 the level lines of H (the phase
portrait of the “frozen system”) are as in the figure.
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Figure 1: Phase portraits of the “frozen” system

Let A (1), A_(7), and Ag(7) = AL(7) + A_(7) be the areas of
the upper, lower loop and the total area of the separatrix.
The initial value I(7y) lies in one of 3 intervals:

Ay = [07 A+<7-1)]7 A= [07 A—<7-1>]7 Ao = [A()(Tl)v C]



We start from 7 = 7, [ = I := I(7y) outside the separatrix. For
T = 75 the arca A(7) inside the separatrix can become equal to 1.
Then for 7 > 1 we fall into one of the separatrix loops.

Into which one? For € — 0 the answer is: to the upper one with
the probability

Al (1)
p=p(m)= A;(@) +A’_(72)’

and to the lower one with the probability 1 — p. (This is true if
Al (1) > 0, otherwise p equals 0 or 1.) At this time moment [
jumps, and then it again approximately preserve.

Then the area A of the loop in which we were captured decreases
and at some time moment ¢ = £73 the trajectory leaves the loop with
I =~ Ay(73) or Ax(73). The time 73 depends on the loop at which
we were captured.

When the period passes, I takes some values I 1 fg, ... with prob-
abilities py, po, ...




We obtain the multivalued map 7' : A — A, where A is the disjoint
union of Ay, A_, and Ay.

T(j ) = I i with probability p;.

Remark. If we have a symmetry (areas of the two separatriz
loops are the same) then I; = I, for all j.

Because of periodicity in 7 we deal with iterations of 1'. This
dynamical system preserves the standard Lebesgue measure on the
interval A. This means that the system is a polymorphism.

Such systems are expected to have generically strong ergodic prop-
erties which implies a fast stochastization in the original Hamilto-
nian system.



Multivalued self-maps of an interval
Let the interval [0, 1] be presented as the union
[07 1] — U;jjzllja [] — [aja b]]

The intervals I; can have non-trivial pairwise intersections. For
example, it can happen that all I; equal [0, 1]. For any j consider
the functions

gpj:Ij%[O, 1], pj]]—>[0,1]






For any x € |0, 1] we put
Viz)=A{7:2 € I}
We assume that the following conditions hold.
P. (Probability) > ey, pj(z) = 1 for any z € [0, 1].

M. (Monotonicity) The functions ¢, are strictly monotone on I;.

According to M there exist the inverse functions ¢; = gpj_l.
Consider the following dynamical system T on [0, 1]. Any point
r € I; is mapped to ¢,(x) with probability p;,. We denote T' =

(@17" P P15 P, [17" '7[J> or Sh()l"tel", T = (907])7 [)



The Perron-Frobenius operator

Consider the space Lo = Lo([0,1],dx), (,) denotes the corre-
sponding scalar product and || - || the Lo-norm.
In a standard way we define the map

WT LQ—>L2, fHWTf
For any y € |0, 1] we put
Uly) ={Jj vy € (1))}

Then {¢;(y) : 7 € U(y)} is the set of all preimages of the point y
with respect to T By definition

Wrf(y ZPJO% )‘fo%( ).

jeU(y

For any measurable set Q C 10, 1] we have:

/WTf zJ:/gpll(Q)pj(x)f(m) dzx.



The positive cone
Ly ={pe€Ly:p>0}

can be associated with the space of densities of measures on [0, 1].
We have the obvious inclusion

If p € Ly, and p = Wrp, the measure v, dv = pdux is said to be
invariant w.r.t. 1.
Polymorphisms

We assume that the Lebesgue measure is invariant with respect
to T
L. (Lebesgue) Wpl = 1.

Any map (¢; p; ), satisfying P, M, and L, will be said to be a
polymorphism. A polymorphism can be regarded as a multivalued
self-map of an interval preserving the Lebesgue measure.
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Vershik construction

According to A.M.Vershik a polymorphism is the ordered diagram

Ty

([0, 1], dz) <= ([0,1], x [0,1],,2) =% ([0,1],, dy),

where 7, and 7, are projections to the z and y component of the
product [0, 1], x [0, 1], and v is a probability measure such that

T,V =dr and mv =dy. (1)

From the dynamical viewpoint a polymorphism maps randomly
any measurable set A C [0, 1], to the interval |0,1], so that the
probability of a measurable set 2 C |0, 1], equals v(A x ).
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The following construction shows a connection between the pre-
sented two definitions of a polymorphism. Suppose that (@;p; I) is
a polymorphism in the sense of our definition. Let v be the follow-

ing measure, supported on the graphs of the functions ¢;. For any
S C [0,1] x [0,1] let xg:[0,1] x [0,1] — R be its indicator:

_ 0 it (z,y) €5,
XS($’y)_{1 if (z,y) € S.

Then by definition

18) =Y [ mlo)xsa, i) da.

We have an obvious

Proposition 1 The measure v satisfies (1).
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An adjoint polymorphism
For any polymorphism T = (p; p; I) we put
Kj = (L), qj(z) =pjov;(x)|¢j(z)].
Proposition 2 (v;q; K) is a polymorphism.

Proof. (v;q; K) is obtained from (;p; I) if in the Vershik dia-
egram we exchange left and right. n

We say that (¢; q; K) is adjoint to T (¢; ¢; K) = T™*. Obviously
=17,

Proposition 3 Wps = Wr.

Corollary 1 For any polymorphism T we have: Wl = 1.

W is a Markov (bistochastic) operator i.e.,
(1) Wr(Ly) C Ly,
(2) Wrl =W75il =1.
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Mixing and ergodicity

Definition. The polymorphism 1" is said to be ergodic if any
fixed point of Wr 1s a constant.
The polymorphism T is said to be mixing if for any f € Lo

Wit — f={(1,f) in the weak Ly-topology as n — oo.
If 7" is mixing, it is ergodic.

If 7" is mixing, T™ is also mixing. Indeed,

(Wifop) = foforany fo <= ((W7)"f,¢) = [@ forany f, .
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An example

The map T = (¢, p), where
J=1, p(r)=2rxmod 1, p=1
is a polymorphism because ¢
preserves the Lebesgue measure.

The adjoint polymorphism

T* = (1,2, 1/2,1/2), see
the figure:
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W« acts as shown in the figure = T™ is mixing.
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Some non-mixing polymorphisms

Consider polymorphisms T with
]1:...:]J:g01<]1):...:gpj(fj): [0,1]

In this case we use the shorter notation T' = (; p).
Example 1 Let T = (p1, v2; 01, p2) be a polymorphism such that

the functions @1, are increasing and for some xy € (0,1)

©1(xg) = xo. Then ps(xg) = xo and the intervals [0, z¢] and
(o, 1] are invariant.
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Proposition 4 There exist f,p:[0,1] — |0, 1] such that
a. f e C>([0,1]),
f(x) < x for any xr € (0,1),
f(0) =0, f( ) =
/|[01
O p( )<1f0r any x € (0,1),
. (f, f~Yp, 1 —p) is a polymorphism.

® o0

w

The polymorphism (f, f~1;p,1 — p) is not ergodic.
Indeed, let |ar, B) be a “fundamental” semi-interval i.e.,

f(le, B)) N f™([e, B)) =0 for all integer m # n,
and Unez fn<[a7 6)) — <07 1)
For any pg € Lo(]0, 1]), supppo C |a, 5] obviously

©.¢)

p = Z poo f" e Ly([0,1]) and Wypp=p.

n=——oo
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Theorem 1 Let T = (p;p) be an ergodic polymorphism such
that pj o j(x)Yi(x) > co > 0 (1 < 5 < J) and the functions
hji =1 o @i satisfy conditions (1)—(1ii) (see below). Then T is

MITINg.

(i) h : [0,1] — [0, 1] is smooth of piecewise smooth, h(0) =
h(1) = 1, and both right and left derivatives b’ > 0 on [O, 1],
(ii) the function h(x) — x does not have zeros on (0, 1),

(111) 1imx_>0 h/(ZE) — )\07 limx_ﬂ h/(ZE) — )\17 where
D<A <1< A or 0< A <1<

Typical functions h, satisfying (i)—(iii) are presented on the figure:
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Figure 2: The functions ¢ and ¢s.

Polymorphisms Tj
Tops = (01,9020, 1 =p), s€(0,1), 0<B<a<l/s

Theorem 27, 3, is ergodic.
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Typical singularities

Theorem 3 Typical singularities of an “adiabatic” polymor-
phism are of & types:

(1) Singularities of “joints”,

(2) T-crossing,

(3) 3 rays.
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Figure 3: Singularities of types (2) and (3)
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Figure 4: Example: functions A4, A_, Ay
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Figure 5: Example: the corresponding polymorphism
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