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Motivation

Consider the Hamiltonian system (1 + 1/2 dof)

ẋ = ∂H/∂y, ẏ = −∂H/∂x, H = H(x, y, "t),

H is periodic in � = "t, "≪ 1.
The action in the frozen system

I = I(H, � ) = area inside the curve H = const

is an adiabatic invariant. It is smooth outside the separatrix and
discontinuous on the separatrix.

ΔI ∼ " when Δt ∼ 1/"

and the trajectory does not cross the separatrix.

We assume that for any fixed � the level lines of H (the phase
portrait of the “frozen system”) are as in the figure.
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Figure 1: Phase portraits of the “frozen” system

Let A+(� ), A−(� ), and A0(� ) = A+(� ) + A−(� ) be the areas of
the upper, lower loop and the total area of the separatrix.
The initial value I(�1) lies in one of 3 intervals:

Λ+ = [0, A+(�1)], Λ− = [0, A−(�1)], Λ0 = [A0(�1), C].
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We start from � = �1, I = Î := I(�1) outside the separatrix. For
� = �2 the area A(� ) inside the separatrix can become equal to Î .
Then for � > �2 we fall into one of the separatrix loops.
Into which one? For " → 0 the answer is: to the upper one with

the probability

p = p(�2) =
A′+(�2)

A′+(�2) + A′−(�2)
,

and to the lower one with the probability 1 − p. (This is true if
A′±(�2) ≥ 0, otherwise p equals 0 or 1.) At this time moment I
jumps, and then it again approximately preserve.
Then the area A± of the loop in which we were captured decreases

and at some time moment t = "�3 the trajectory leaves the loop with
I ≈ A0(�3) or A∓(�3). The time �3 depends on the loop at which
we were captured.
When the period passes, I takes some values Î1, Î2, . . . with prob-

abilities p1, p2, . . .
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We obtain the multivalued map T : Λ→ Λ, where Λ is the disjoint
union of Λ+,Λ−, and Λ0.

T (Î) = Îj with probability pj.

Remark. If we have a symmetry (areas of the two separatrix
loops are the same) then Îj ≈ I1 for all j.

Because of periodicity in � we deal with iterations of T . This
dynamical system preserves the standard Lebesgue measure on the
interval Λ. This means that the system is a polymorphism.
Such systems are expected to have generically strong ergodic prop-

erties which implies a fast stochastization in the original Hamilto-
nian system.
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Multivalued self-maps of an interval

Let the interval [0, 1] be presented as the union

[0, 1] = ∪Jj=1Ij, Ij = [aj, bj].

The intervals Ij can have non-trivial pairwise intersections. For
example, it can happen that all Ij equal [0, 1]. For any j consider
the functions

'j : Ij → [0, 1], pj : Ij → [0, 1].
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For any x ∈ [0, 1] we put

V (x) = {j : x ∈ Ij}.

We assume that the following conditions hold.

P. (Probability)
∑

j∈V (x) pj(x) = 1 for any x ∈ [0, 1].

M. (Monotonicity) The functions 'j are strictly monotone on Ij.

According to M there exist the inverse functions  j = '−1j .
Consider the following dynamical system T on [0, 1]. Any point

x ∈ Ij is mapped to 'j(x) with probability pj. We denote T =
(

'1, . . . , 'J ; p1, . . . , pJ ; I1, . . . , IJ
)

or shorter, T = ('; p; I).
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The Perron-Frobenius operator

Consider the space L2 = L2([0, 1], dx), ⟨ , ⟩ denotes the corre-
sponding scalar product and ∥ ⋅ ∥ the L2-norm.
In a standard way we define the map

WT : L2→ L2, f 7→ WTf.

For any y ∈ [0, 1] we put

U (y) = {j : y ∈ 'j(Ij)}.

Then { j(y) : j ∈ U (y)} is the set of all preimages of the point y
with respect to T . By definition

WTf(y) =
∑

j∈U(y)

pj ∘  j(y) ∣ 
′
j(y)∣ f ∘  j(y).

For any measurable set Ω ⊂ [0, 1] we have:
∫

Ω

WTf(y) dy =
J

∑

j=1

∫

'−1j (Ω)

pj(x) f(x) dx.
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The positive cone

L+
2 = {� ∈ L2 : � ≥ 0}

can be associated with the space of densities of measures on [0, 1].
We have the obvious inclusion

WT (L
+
2 ) ⊂ L+

2 .

If � ∈ L+
2 , and � = WT�, the measure �, d� = � dx is said to be

invariant w.r.t. T .

Polymorphisms

We assume that the Lebesgue measure is invariant with respect
to T .
L. (Lebesgue) WT1 = 1.

Any map ('; p; I), satisfying P, M, and L, will be said to be a
polymorphism. A polymorphism can be regarded as a multivalued
self-map of an interval preserving the Lebesgue measure.
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Vershik construction

According to A.M.Vershik a polymorphism is the ordered diagram
(

[0, 1]x, dx
) �x←−

(

[0, 1]x × [0, 1]y, �
) �y
−→

(

[0, 1]y, dy
)

,

where �x and �y are projections to the x and y component of the
product [0, 1]x × [0, 1]y and � is a probability measure such that

�x� = dx and �y� = dy. (1)

From the dynamical viewpoint a polymorphism maps randomly
any measurable set Λ ⊂ [0, 1]x to the interval [0, 1]y so that the
probability of a measurable set Ω ⊂ [0, 1]y equals �(Λ× Ω).
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The following construction shows a connection between the pre-
sented two definitions of a polymorphism. Suppose that ('; p; I) is
a polymorphism in the sense of our definition. Let � be the follow-
ing measure, supported on the graphs of the functions 'j. For any
S ⊂ [0, 1]× [0, 1] let �S : [0, 1]× [0, 1]→ ℝ be its indicator:

�S(x, y) =

{

0 if (x, y) ∕∈ S,
1 if (x, y) ∈ S.

Then by definition

�(S) =
J

∑

j=1

∫

Ij

pj(x)�S(x, 'j(x)) dx.

We have an obvious

Proposition 1 The measure � satisfies (1).
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An adjoint polymorphism

For any polymorphism T = ('; p; I) we put

Kj = 'j(Ij), qj(x) = pj ∘  j(x) ∣ 
′
j(x)∣.

Proposition 2 ( ; q;K) is a polymorphism.

Proof. ( ; q;K) is obtained from ('; p; I) if in the Vershik dia-
gram we exchange left and right.

We say that ( ; q;K) is adjoint to T : ( ; q;K) = T ∗. Obviously
T ∗∗ = T .

Proposition 3 WT ∗ = W ∗
T .

Corollary 1 For any polymorphism T we have: W ∗
T1 = 1.

WT is a Markov (bistochastic) operator i.e.,

(1) WT (L
+
2 ) ⊂ L+

2 ,
(2) WT1 = W ∗

T1 = 1.
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Mixing and ergodicity

Definition. The polymorphism T is said to be ergodic if any
fixed point of WT is a constant.
The polymorphism T is said to be mixing if for any f ∈ L2

W n
T f → f = ⟨1, f⟩ in the weak L2-topology as n→∞.

If T is mixing, it is ergodic.

If T is mixing, T ∗ is also mixing. Indeed,

⟨W n
T f, '⟩ → f ' for any f, ' ⇐⇒ ⟨(W ∗

T )
nf, '⟩ → f ' for any f, '.
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An example

The map T = (', p), where
J = 1, '(x) = 2x mod 1, p = 1
is a polymorphism because '
preserves the Lebesgue measure.

The adjoint polymorphism
T ∗ = ('1, '2; 1/2, 1/2), see
the figure:
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WT ∗ acts as shown in the figure ⇒ T ∗ is mixing.
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Some non-mixing polymorphisms

Consider polymorphisms T with

I1 = . . . = IJ = '1(I1) = . . . = 'J(IJ) = [0, 1].

In this case we use the shorter notation T = ('; p).

Example 1 Let T = ('1, '2; p1, p2) be a polymorphism such that
the functions '1, '2 are increasing and for some x0 ∈ (0, 1)
'1(x0) = x0. Then '2(x0) = x0 and the intervals [0, x0] and
[x0, 1] are invariant.
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Proposition 4 There exist f, p : [0, 1]→ [0, 1] such that
a. f ∈ C∞([0, 1]),
b. f(x) < x for any x ∈ (0, 1),
c. f(0) = 0, f(1) = 1,
d. f ′∣[0,1] > 0,
e. 0 < p(x) < 1 for any x ∈ (0, 1),
f. (f, f−1; p, 1− p) is a polymorphism.

The polymorphism (f, f−1; p, 1− p) is not ergodic.

Indeed, let [�, �) be a “fundamental” semi-interval i.e.,

fn([�, �)) ∩ fm([�, �)) = ∅ for all integer m ∕= n,

and ∪n∈ℤ f
n([�, �)) = (0, 1).

For any �0 ∈ L2([0, 1]), supp�0 ⊂ [�, �] obviously

� :=
∞
∑

n=−∞

�0 ∘ f
n ∈ L2([0, 1]) and WT� = �.
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Theorem 1 Let T = ('; p) be an ergodic polymorphism such
that pj ∘  j(x) 

′
j(x) > c0 > 0 (1 ≤ j ≤ J) and the functions

ℎjk =  j ∘ 'k satisfy conditions (i)–(iii) (see below). Then T is
mixing.

(i) ℎ : [0, 1] → [0, 1] is smooth of piecewise smooth, ℎ(0) = 0,
ℎ(1) = 1, and both right and left derivatives ℎ′ > 0 on [0, 1],
(ii) the function ℎ(x)− x does not have zeros on (0, 1),
(iii) limx→0 ℎ

′(x) = �0, limx→1 ℎ
′(x) = �1, where

0 < �0 < 1 < �1 or 0 < �1 < 1 < �0.

Typical functions ℎ, satisfying (i)–(iii) are presented on the figure:
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Figure 2: The functions '1 and '2.

Polymorphisms T�,s

T�,�,s = ('1, '2; p, 1− p), s ∈ (0, 1), 0 < � < � < 1/s.

Theorem 2 T�,�,s is ergodic.
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Typical singularities

Theorem 3 Typical singularities of an “adiabatic” polymor-
phism are of 3 types:

(1) Singularities of “joints”,
(2) T-crossing,
(3) 3 rays.
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Figure 3: Singularities of types (2) and (3)
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Figure 4: Example: functions A+, A−
, A0

25



Figure 5: Example: the corresponding polymorphism

26



References

[1] Vershik A.M. Multivalued mappings with invariant measure
(polymorphisms) and Markov operators. Zap. Nauchn. Semin.
LOMI, 72 (1977), 26-61 in Russian. English transl. in J. Sov.
Math., 23 (1983), 2243–2266.

[2] Vershik A.M. Polymorphisms, Markov processes, and quasi-
similarity. DCDS 13 (2005), no.5, 1305–1324.

[3] Neishtadt A., Treschev D., Polymorphisms and adiabatic chaos,
Ergodic Theory Dynam. Systems, 31:1 (2011), 259284

[4] Golubtsov, P.E., An example of piecewisely-linear polymor-
phism, Math. Notes, 91:3 (2012), 323330

[5] Golubtsov, P.E., Typical singularities of polymorphisms gener-
ated by the problem of destruction of an adiabatic invariant. to
appear in Reg. Chaot. Dyn.

27


