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Observed Trojan Satellites
http://www.minorplanetcenter.net

Data from Center for Minor Planets, Nov 28, 2012
Number of objects at L4 : 3416 (Greeks)

increased by 95 since January 2012
the Trojan Hector (number 624) is among the Greeks
145 objects at L4 have names assigned to them

Number of objects at L5 : 2015 (Trojans)
increased by 261 since January 2012
The Greek Patroclus (number 617) is among the Trojans
96 objects at L5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/
JupiterTrojans.html
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Distribution of orbital elements for Trojan Satellites

Semi major axis: 4.952 to 5.419, Jupiter’s value is 5.203,363,01
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Distribution of the eccentricities

Jupiter’s orbit has an eccentricity of 0.048,392,66
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Distribution of the inclination

The orbit of Jupiter has an inclination of 1.3053 degrees
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Distribution of the observed brightness
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Simulation of motion in MATLAB

Data taken from Minor Planet Center
Orbits are displayed with given orbital elements
The motion as shown is not valid for longer period of times
Program does not use numerical integration
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The Circular Restricted Problem of Three Bodies

In a rotating frame the Hamiltonian of the circular restricted
problem of three bodies is

H =
1
2
(y2

1 + y2
2 )− x1y2 + x2y1 −

(1− µ)

r1
− µ

r2
,

(x1, x2) are the components of the position vector in the rotating
frame centered at the center of mass
(y1, y2) are their conjugate momenta,

r1 =
√

(x1 + µ)2 + x2
2 and r2 =

√
(x1 + µ− 1)2 + x2

2 are the
distances of the test particle to the two primaries.
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The rotating frame of reference of the restricted
problem and the location of the equilibrium points

t
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Linearized System near L4

Near equilibrium point L4

x1 = 1/2− µ+ X1 y1 = −
√

3/2 + Y1
x2 =

√
3/2 + X2 y2 = 1/2− µ+ Y2

Expand Hamiltonian function H =
∑

k=0 Hk

Since H1 = 0 the linearized system is

Ż = J
∂H2

∂Z
=


0 1 1 0
−1 0 0 1
−1

4
γ
4 0 1

γ
4

5
4 −1 0

 Z

Abbreviation used: γ = 3
√

3(1− 2µ)

For 0 ≤ µ ≤ µ1 with µ1 = 1
2(1−

√
23
27) the eigenvalues are purely

imaginary ±iω1, ±iω2
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The frequencies in 0 ≤ µ ≤ µ1

ω1 =

√
(1 +

√
1− 27µ(1− µ))/2

= 1− 27µ
8

− 3213µ2

128
+ · · ·

ω2 =

√
(1−

√
1− 27µ(1− µ))/2

=
3
√

3µ
2

(1 +
23µ

8
+

4439µ2

128
+ · · · )

Problem at µ = 0 (vertical tangent)
Also problem at µ1 due to repeated
eigenvalues when ω1 = ω2 =

√
2

2
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Symplectic linear transformation for 0 < µ < µ1

2664
X1
X2
Y1
Y2

3775 = RS

2664
x1
x2
y1
y2

3775

R =

2666664
γ γ 8

√
ω1 −8

√
ω2

−3 − 4ω2
1 −7 + 4ω2

1 0 0

3 − 4ω2
1 −1 + 4ω2

1 γ
√

ω1 −γ
√

ω2

γ γ (5 − 4ω2
1)
√

ω1 −(1 + 4ω2
1)
√

ω2

3777775

S =

26666666664

1
2

q
ω1(−1+2ω2

1 )(3+4ω2
1 )

0 0 0

0 1
2

q
ω2(7−4ω2

1 )(−1+2ω2
1 )

0 0

0 0 1
2

q
(−1+2ω2

1 )(3+4ω2
1 )

0

0 0 0 1
2

q
(7−4ω2

1 )(−1+2ω2
1 )

37777777775
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Linearized system in normal form,
but the transformation is singular at µ = 0 and µ = µ1

H =
ω1

2
(x2

1 + y2
1 )− ω2

2
(x2

2 + y2
2 )

Two harmonic oscillators with frequencies ω1 and ω2

The Hamiltonian function is indefinite
ω1 ≥ ω2

Short period family: x2 = y2 = 0 gives ẍ1 + ω2
1x1 = 0 periodic

solution with period 2π/ω1

Long period family: x1 = y1 = 0 gives ẍ2 + ω2
2x2 = 0 periodic

solution with period 2π/ω2
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The Variational Equations near L4

The differential equations in rotating coordinates

ẍ1 − 2ẋ2 = Ωx1

ẍ2 + 2ẋ1 = Ωx2

with Ω(x1, x2) = 1
2(x2

1 + x2
2 )− (1−µ)

r1
− µ

r2

The variational equations near L4: x1 = 1
2 − µ+ ξ1, x2 =

√
3

2 + ξ2

ξ̈1 − 2ξ̇2 =
3
4
ξ1 +

3
√

3
4

(1− 2µ)ξ2

ξ̈2 + 2ξ̇1 =
3
√

3
4

(1− 2µ)ξ1 +
9
4
ξ2

Terms on right hand side can be put into diagonal form
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Construction of the Principle Frame near L4

rotation by angle α with tan 2α = −
√

3(1− 2µ)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
principle system of coordinates at L4: drawn in green for mu=0.3
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Solution to transformed variational Equations

ξ = T ξ is a rotation in the ξ1–ξ2 plane. It results in equations of the
same form

ξ̈1 − 2ξ̇2 = λ1ξ1

ξ̈2 + 2ξ̇1 = λ2ξ2

Form of the solution

ξ1 = A1 cosω1t + A2 cosω2t
ξ2 = C1 sinω1t + C2 sinω2t

Short Period Orbit: Set A2 = C2 = 0 and find A1 = − 2ω1
ω2

1+λ1
C1

Long Period Orbit: Set A1 = C1 = 0 and find A2 = − 2ω2
ω2

2+λ1
C2

Note |A1/C1| > 1 and also |A2/C2| > 1 so that semi major axes of
both ellipses are along ξ1 axis
Both short and long period orbits are retrograde
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same form

ξ̈1 − 2ξ̇2 = λ1ξ1

ξ̈2 + 2ξ̇1 = λ2ξ2

Form of the solution

ξ1 = A1 cosω1t + A2 cosω2t
ξ2 = C1 sinω1t + C2 sinω2t

Short Period Orbit: Set A2 = C2 = 0 and find A1 = − 2ω1
ω2

1+λ1
C1

Long Period Orbit: Set A1 = C1 = 0 and find A2 = − 2ω2
ω2

2+λ1
C2

Note |A1/C1| > 1 and also |A2/C2| > 1 so that semi major axes of
both ellipses are along ξ1 axis
Both short and long period orbits are retrograde
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Eccentricity of short and long periodic orbits around L4

in the orbital plane
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Principle Frame with short and long period orbits
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Short period orbits

µ (S-J) µ1
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Comments to previous picture

The family of short period orbits emanating from L4 is the
backbone of the Trojan web.
There is of course a symmetric family emanating from L5.
In the inertial frame of reference both families look like a set a
moderately perturbed Keplerian orbits with an eccentricity going
from zero at L4 (or L5) to a rather large value when they meet the
symmetric family emanating from L3.
The argument of pericenter goes from 60◦ ahead (or behind for
L5) of the perturbing body to 180◦ ahead (or behind for L5).
As seen from the two panels of the figure, the orbits do not
change much with the mass-ratio.
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Family of symmetric periodic orbits emanating from L3

µ (S-J) µ1
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Existence of short periodic orbits

Since ω1 > ω2 for 0 < µ < µ1 the short periodic orbits constructed
in the linear system will persist in the nonlinear system at least
near L4

Lyapunov’s theorem gives no information about the global
behavior of the short period family
The general theory about the continuation of periodic orbits gives
some information
A natural family of periodic orbits of a two-degree of freedom
Hamiltonian system with no other first integral than the
Hamiltonian can be continued until one of the following things
happens:

the orbit tends to infinity;
the period tends to infinity;
the orbit tends to an equilibrium point;
the orbit is such that for the monodromy matrix Trace = 2 and
bifurcations or other things can happen.
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Trace for characteristic exponents
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Resonance Cases for µ = µp/q we have ω1/ω2 = p/q

Special values for the mass ratio µ = µp when ω1/ω2 = p

µ1 = 0.038520896504551 µ7 = 0.002912184522396
µ2 = 0.024293897142052 µ8 = 0.002249196513710
µ∗∗ ≈ 0.02072 µ9 = 0.001787848394744
µ3 = 0.013516016022453 µ10 = 0.001454405739621
µ∗ = 0.012723988746542 µ11 = 0.001205829591109
µEM = 0.01215002 µ12 = 0.001015696721082
µd = 0.010913667677201 µSJ = 0.000953875
µ4 = 0.008270372663897 µ13 = 0.000867085298404
µ5 = 0.005509202949840 µ14 = 0.000748764338855
µ6 = 0.003911084259658 µ15 = 0.000653048708761
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ω1/ω2 rational

The case ω1/ω2 rational is of special interest, since it is the
organizing center for many interesting bifurcations and the reason
for instabilities.
For ω1/ω2 irrational the normal form would be

H(I1, I2, φ1, φ2) = ω1I1 − ω2I2 + K (I1, I2),

but transformation does not converge
The solution would be invariant tori: I1 = c1, I2 = c2 with linear
flows of constant slope
The question is: Which tori exist, when ω1/ω2 is rational and
normalization is carried out only to a finite order?
Only when ω1/ω2 is not an integer can the long periodic orbits with
period 2π/ω2 be guaranteed by Liapunov’s theorem.
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Normal Form in Action Angle Variables for µ = µp/q

µp/q such that ω1/ω2 = p/q with p > q and p + q ≥ 4

H = ω1I1 − ω2I2 + ε2(λ1I1 − λ2I2 +
A
2

I2
1 + BI1I2 +

C
2

I2
2)

+ · · ·+ εp+q−2Ip/2
1 Iq/2

2 G cosψ + · · ·

ψ = qφ1 + pφ2 + α

İ1 = −εp+q−2Ip/2
1 Iq/2

2 qG sinψ + · · ·

İ2 = −εp+q−2Ip/2
1 Iq/2

2 pG sinψ + · · ·
φ̇1 = −pλ− ε2(λ1 + AI1 + BI2) + · · ·
φ̇2 = qλ− ε2(−λ2 + BI1 + CI2) + · · ·
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Periodic Orbits Derived from Normal Form

Condition for periodic orbit to exist for ε 6= 0:
Nontrivial characteristic multipliers can’t be 1
Otherwise solve the bifurcation equations to get periodic orbit
One equation can be replaced by Hamiltonian
Use Fredholm alternative theorem to solve equations
If an action variable is close to 0 switch to Cartesian coordinates

Results:
Short period: T1 ≈ 2π

pλ . Family near I1 > 0 and I2 ≈ 0
Long period: T2 ≈ 2π

qλ . Family near I1 ≈ 0 and I2 > 0
Common period: T0 ≈ 2π

λ . Family I1 > 0 and I2 > 0
Abbreviation used

M = qA + pB
N = qB + pC
σ = qλ1 − pλ2
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The normal form for the restricted three-body problem
for 0 < µ < µ1, and µ 6= µ2, µ3 through fourth order
terms

H = ω1I1 − ω2I2 +
1
2
(AI2

1 + 2BI1I2 + CI2
2) + · · · .

A =
ω2

2(81− 696ω2
1 + 124ω4

1)

72(1− 2ω2
1)2(1− 5ω2

1)
,

B = −
ω1ω2(43 + 64ω2

1ω
2
2)

6(1− 2ω2
1)(1− 2ω2

2)(1− 5ω2
1)(1− 5ω2

2)
,

C(ω1, ω2) = A(ω2, ω1).

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 28 / 68



The normal form for the restricted three-body problem
for 0 < µ < µ1, and µ 6= µ2, µ3 through fourth order
terms

H = ω1I1 − ω2I2 +
1
2
(AI2

1 + 2BI1I2 + CI2
2) + · · · .

A =
ω2

2(81− 696ω2
1 + 124ω4

1)

72(1− 2ω2
1)2(1− 5ω2

1)
,

B = −
ω1ω2(43 + 64ω2

1ω
2
2)

6(1− 2ω2
1)(1− 2ω2

2)(1− 5ω2
1)(1− 5ω2

2)
,

C(ω1, ω2) = A(ω2, ω1).

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 28 / 68



Short Period Orbits, I1 > 0 and I2 ≈ 0

Nontrivial characteristic multipliers: eigenvalues of

∂(x2(2π), y2(2π))

∂(x20, y20)
=

(
cos (2πν) sin (2πν)
− sin (2πν) cos(2πν)

)
+ O(ε3)

and they are cos(2πν)± i sin (2πν) with

ν =
q
p
− ε2

p2λ
(MJ1 + σ) + O(ε3)

The eigenvalues are on the unit circle and have to stay there for
J1 ≥ 0 since they are not +1 or -1.
Note: If J1 = −σ/M > 0 and orbit is traveled q times, the
characteristic multipliers become +1. This will allow for the
bifurcation of another family of periodic orbits.
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Long Period Family I2 > 0 and I1 ≈ 0

Use Φ2 as new independent variable, and x1 = x1(Φ2),
y1 = y1(Φ2)

I2 = J2 = const
Nontrivial characteristic multipliers: eigenvalues of

∂(x1(2π), y1(2π))

∂(x10, y10)
=

(
cos (2πν) sin (2πν)
− sin (2πν) cos(2πν)

)
+ O(ε3)

and are cos(2πν)± i sin (2πν) with

ν =
p
q

+
ε2

q2λ
(NJ2 + σ) + O(ε3)

The eigenvalues may not stay on the unit circle when they are −1
for q = 2 and when they are +1 for q = 1
For q = 2 near J2 = −σ/N > 0 the long period family encounters
an interval of instability
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The exceptional resonance case when q = 1

The Jacobian is zero at ε = 0 when q = 1
Expand bifurcation equations in ε and divide by ε2

If the modified Jacobian

∂(Γ2, Γ3)

∂(x10, y10)
= (NJ2 + σ)2 6= 0

then the bifurcation equations can be solved also when q = 1
If J2 = −σ/N > 0 then at this value for J2 the bifurcation equations
can not be solved
The family of long period orbits breaks up and connects with the
family of the common period
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Bifurcation equations for orbits with period
T = 2π/λ + εβ and I1 6= 0 and I2 6= 0

Use differential equations in action–angle variables
The initial conditions are I1(0) = J1, I2(0) = J2 and φ2(0) = ψ2

Γ2 = Jq/2
1 Jp/2

2 G sin (pψ2 + α) + O(ε2) = 0 (1)
Γ3 = MJ1 + NJ2 + σ + O(ε) = 0 (2)

If (2) allows for solutions with J1 > 0 and J2 > 0 we have a torus of
periodic solutions
Periodic orbits are possible on this torus when 1 is satisfied
sin (pψ2 + α) + · · · = 0
Two distinct solutions are possible ψ2 = −α/p + · · · and
ψ2 = (π − α)/p + · · · , one is stable the other unstable
All other solutions of (1) give nothing new
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Equation MJ1 + NJ2 + σ = 0 for L4

Detuning:

σ = ω2λ1 − ω1λ2 = ω2
dω1

dµ
− ω1

dω2

dµ

For restricted three body problem

σ =
−3

√
3(1− 2µ)

4
√
µ(1− µ)(1− 27µ(1− µ))

< 0

Since σ < 0 it corresponds to µ > µp/q

To see what happens for µ < µp/q change sign of σ
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Values for MJ1 + NJ2 + σ = 0 near L4

M =
ω2(324− 4029ω2

1 + 6397ω4
1 − 3828ω6

1 + 620ω8
1)

72(1− 2ω2
1)2(4− 25ω2

1 + 25ω4
1)

N =
ω1(−516 + 239ω2

1 − 1367ω4
1 + 1348ω6

1 + 620ω8
1)

72(1− 2ω2
1)2(4− 25ω2

1 + 25ω4
1)

N = 0 for µ = µ∗ = 0.01272398874654163

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 34 / 68



Values for MJ1 + NJ2 + σ = 0 near L4

M =
ω2(324− 4029ω2

1 + 6397ω4
1 − 3828ω6

1 + 620ω8
1)

72(1− 2ω2
1)2(4− 25ω2

1 + 25ω4
1)

N =
ω1(−516 + 239ω2

1 − 1367ω4
1 + 1348ω6

1 + 620ω8
1)

72(1− 2ω2
1)2(4− 25ω2

1 + 25ω4
1)

N = 0 for µ = µ∗ = 0.01272398874654163

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 34 / 68



Values for MJ1 + NJ2 + σ = 0 near L4

M =
ω2(324− 4029ω2

1 + 6397ω4
1 − 3828ω6

1 + 620ω8
1)

72(1− 2ω2
1)2(4− 25ω2

1 + 25ω4
1)

N =
ω1(−516 + 239ω2

1 − 1367ω4
1 + 1348ω6

1 + 620ω8
1)

72(1− 2ω2
1)2(4− 25ω2

1 + 25ω4
1)

N = 0 for µ = µ∗ = 0.01272398874654163

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 34 / 68



“Open case” for 0 < µ < µ∗

0 0.5 1
0

0.2

0.4

0.6

0.8

1
µ < µp/q

Long period family I2 axis

S
ho

rt
 p

er
io

d 
fa

m
ily

,  
I1

 a
xi

s

0 0.5 1
0

0.2

0.4

0.6

0.8

1
µ = µp/q

Long period family I2 axis
0 0.5 1

0

0.2

0.4

0.6

0.8

1
µ > µp/q

Long period family I2 axis

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 35 / 68



“Bridge” for µ∗ < µ < µ2 µ 6= µ3
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“Bridge” for µ2 < µ < µ1

0 0.5 1
0

0.2

0.4

0.6

0.8

1
µ < µp/q

Long period family I2 axis

S
ho

rt
 p

er
io

d 
fa

m
ily

,  
I1

 a
xi

s

0 0.5 1
0

0.2

0.4

0.6

0.8

1
µ = µp/q

Long period family I2 axis
0 0.5 1

0

0.2

0.4

0.6

0.8

1
µ > µp/q

Long period family I2 axis

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 37 / 68



What happens when J1 → 0 or J2 → 0 (case µ < µ∗)

Theorem (Case p > q > 2)
For µ < µp/q bifurcation of a stable and unstable family from the
short period family (repeated p times)
For µ = µp/q four families of periodic orbits emanate from L4:
Short, long and two with the common period
For µ > µp/q bifurcation of a stable and unstable family from the
long period family (repeated q times)

Result follows from normal form through fourth order terms
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What happens when J1 → 0 or J2 → 0 (continued)

Theorem (Case p > q = 2)
For µ < µp/2 bifurcation of a stable and unstable family from the
short period family (repeated p times)
For µ = µp/2 four families of periodic orbits emanate from L4:
Short, long and two with the common period
For µ > µp/2 long period family has interval of instability and the
two families connect to the end of the interval with orbit traveled
twice

To show result need to have resonance terms, that is G 6= 0
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What happens when J1 → 0 or J2 → 0 (continued)

Theorem ( Case p > 3 and q = 1)
For µ < µp bifurcation of a stable and unstable family from the
short period family (repeated p times)
For µ = µp four families of periodic orbits emanate from L4: Short,
and three long period families
For µ > µp long period family breaks up and connects with the
families of the common period

To prove result need to have resonance terms with G 6= 0
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Schematic presentation of results for µ in interval
[µ13, µ12]

Left panel from terms through order 4
Right panel from normal form through order 14
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Long period orbits for µSJ : B(L, 13S)
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Short period bridge B(13S, 14S)
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Period versus Energy for long period chain
Lp,B(13S, 14S),B(1S, 15S),B(15S, 16S),B(16S, 17S)

Lp

B(13S,14S)

B(14S,15S)

B(15S,16S)

B(16S,17S)

Lp

B(13S,14S)

h

T

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 44 / 68



Fast and slow variables

Gelfreich & Lerman (2002): ‘Long periodic orbits and invariant tori
in singularly perturbed Hamiltonian systems’
They consider Hamiltonian H(x , y ,u, v ; ε) with symplectic form
dΩ = dx ∧ dy + εdu ∧ dv , that is

ε
dx
dt

=
∂H
∂y

du
dt

=
∂H
∂v

ε
dy
dt

= −∂H
∂x

dv
dt

= −∂H
∂u

x and y are the fast variables, u and v are the slow variables
The harmonic oscillators are in 1 : n resonance as ε→ 0
They prove the existence of invariant tori near the equilibrium point
They also show via numerical computations that the long period
family has a series of gaps
Here ω1 would be the fast frequency and ω2 the slow frequency
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Versal Normal Form for µ near 0

The paper is not applicable when µ→ 0
Need to consider versal normal form and not diagonal form as in
the paper

H =
ω1

2
(x2

1 + y2
1 )− 1

2
(x2

2 + ω2
2y2

2 )

and

ż =


0 0 ω1 0
0 0 0 −ω2

2
−ω1 0 0 0

0 1 0 0

 z
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Symplectic linear transformation with

R =

2666664
γ 1/4 + ω2

2 8ω1 −γ/4

−7 + 4ω2
2 −γ/4 0 3/4 − ω2

2

−1 + 4ω2
2 0 γω1 (−3 + 3ω2

2 − 4ω4
2)/4

γ 1 ω1 + 4ω1ω2
2 γ(−1 + ω2

2)/4

3777775

S =

266666666664

1
2

q
ω1(1−2ω2

2 )(7−4ω2
2 )

0 0 0

0 2q
(1−2ω2

2 )(3−3ω2
2+4ω4

2 )
0 0

0 0 1
2

q
ω1(1−2ω2

2 )(7−4ω2
2 )

0

0 0 0 2q
(1−2ω2

2 )(3−3ω2
2+4ω4

2 )

377777777775
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Transformation is regular for µ = 0

Easy to check, set ω2 = 0
ω2 is a natural parameter for the problem
Replacement rules

ω2
1 → 1− ω2

2

γ2 → 27− 16ω2
2 + 16ω4

2
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Normalization of higher order terms via Lie transform

H = H0
0 (x1, x2, y1, y2) + H0

1 (x1, x2, y1, y2) +
1
2!

H0
2 (x1, x2, y1, y2) + · · ·

with
H0

0 =
ω1

2
(x2

1 + y2
1 )− 1

2
(x2

2 + ω2
2y2

2 )

Normalization is carried out in real variables, to avoid any issues with
reality conditions
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Invariant Subspaces of Lie Transform

For
W = xα1

1 xα2
2 yβ1

1 yβ2
2

we have

LW H0
0 = β1ω1xα1+1

1 xα2
2 yβ1−1

1 yβ2
2 − α1ω1xα1−1

1 xα2
2 yβ1+1

1 yβ2
2

−β2xα1
1 xα2+1

2 yβ1
1 yβ2−1

2 + α2ω
2
2xα1

1 xα2−1
2 yβ1

1 yβ2+1
2

Invariant subspace for terms of degree

α1 + α2 + β1 + β2 = n

is formed by α1 + β1 = n1 and α2 + β2 = n − n1
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Action of LW H0
0 in matrix form

For invariant sub-spaces (y3
1 , y2

1 x1, y1x2
1 , x3

1 )


0 ω1 0 0

−3ω1 0 2ω1 0
0 −2ω1 0 3ω1
0 0 −ω1 0


Matrix is nonsingular and thus all third order terms in this sub-space
can be eliminated
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For invariant sub-spaces (y4
1 , y3

1 x1, y2
1 x2

1 , y1x3
1 , x4

1 )


0 ω1 0 0 0

−4ω1 0 2ω1 0 0
0 −3ω1 0 3ω1 0
0 0 −2ω1 0 4ω1
0 0 0 −ω1 0


Matrix is singular and thus not all fourth order terms in this sub-space
can be eliminated. Common to choose terms in kernel of form
(x2

1 + y2
1 )2, that is, terms make up action variable

I1 =
1
2
(x2

1 + y2
1 )
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Action of LW H0
0 in matrix form

For invariant sub-spaces (y3
2 , y2

2 x2, y2x2
2 , x3

2 )


0 −1 0 0

3ω2
2 0 −2 0

0 2ω2
2 0 −3

0 0 ω2
2 0


Matrix is singular when ω2 = 0
Can not eliminate all third order terms in this sub-space
Will keep term with y3

2

Same will happen at fourth order terms
Will keep terms with y4

2
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Full versal normal form at L4

H̃ = ω1I1 −
1
2
(x2

2 + ω2
2y2

2 )

+ω2
2(a1I1y2 + a2y3

2

+b1I2
1 + b2I1y2

2 + b3y4
2

+c1I2
1y2 + c2I1y3

2 + c3y5
2

+ · · · )

= ω1I1 −
1
2
(x2

2 + ω2
2y2

2 ) + F (I1, y2)

All coefficients depend on ω2 and are continuous at ω2 = 0
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Differential Equations for Versal Normal Form

H̃ = ω1I1 −
1
2
(x2

2 + ω2
2y2

2 ) + F (I1, y2)

İ1 = 0

φ̇1 = −ω1 −
∂F
∂I1

ẋ2 = −ω2
2y2 +

∂F
∂y2

ẏ2 = x2
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Short Period Family

Since ∂F
∂y2

6= 0 for x2 = y2 = 0 short period family no longer at
x2 = y2 = 0 but nearby
Also period will not be exactly 2π/ω1.
The equation

ÿ2 = −ω2
2y2 +

∂F
∂y2

has a 2π/ω1 periodic (that is constant) solution if

y2 =
1
ω2

2

∂F
∂y2

and with it x2 = 0
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Short Period Family Continued: I1=const

Set

y2 = 0 + εη1 + ε2η2 + · · ·

we find the constant solution

y2 = εa1I1 + ε3(3a2
1 + 2a1b2 + c1)I2

1 + · · ·

and

φ̇1 = ω1 + ε(a2
1 + b1)ω

2
2I1 + ε33(a3

1a2 + a2
1b2 + a1c1 + d1)ω

2
2I2

1 + · · ·
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Remarks

Lie Transformation has been carried out to a much higher order
Choice of ω2 as the basic parameter makes this possible
For restricted three body problem at L4 rational expressions in ω2
are generated.
At each step of the normalization new singularities are created,
they are the same as appear when normalizing H = ω1I1 − ω2I2
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Frequency: Short Period Family

√
1− ω2

2 + ω2
2 ×

(
I1(−491 + 448ω2

2 + 124ω4
2)

72(1− 2ω2
2)2(−4 + 5ω2

2)

−
I2
1p2(ω2)

20736
√

1− ω2
2(−1 + 2ω2

2)5(−4 + 5ω2
2)3(−9 + 10ω2

2)

−
I3
1p3(ω2)

13436928(9− 10ω2
2)2(1− 2ω2

2)8(−4 + 5ω2
2)5(16− 33ω2

2 + 17ω4
2)

+ · · · )

p2(ω2) = (−18522432− 221117724ω
2
2 + 1834402891ω

4
2 − 5330237408ω

6
2 + 8326473644ω

8
2

−7970990576ω
10
2 + 4915656752ω

12
2 − 1885370432ω

14
2 + 349789120ω

16
2 )
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Frequency of short period orbits for ω2 = 0.01

0.2 0.4 0.6 0.8 1.0
I1

0.99986

0.99988

0.99990

0.99992

0.99994

0.99996

0.99998

Short period
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Arnold’s Stability Theorem for a Hamiltonian with two
degrees of freedom

Arnold’s theorem addresses the case when exponents are pure
imaginary, and the Hamiltonian is not positive definite.
Assume the Hamiltonian has been normalized, that is in
symplectic coordinates x1, x2, y1, y2 of the form

H = H2 + H4 + · · ·+ H2N + H†,

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 61 / 68



Arnold’s Stability Theorem for a Hamiltonian with two
degrees of freedom

Arnold’s theorem addresses the case when exponents are pure
imaginary, and the Hamiltonian is not positive definite.
Assume the Hamiltonian has been normalized, that is in
symplectic coordinates x1, x2, y1, y2 of the form

H = H2 + H4 + · · ·+ H2N + H†,

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 61 / 68



Arnold’s Stability Theorem

H = H2 + H4 + · · ·+ H2N + H†,
H2k , 1 ≤ k ≤ N, is a homogeneous polynomial of degree k in I1, I2
Series expansion of H† starts with terms of degree 2N + 1;
H2 = ω1I1 − ω2I2, ωi nonzero constants;

Theorem
The origin is stable provided that for some k , 0 ≤ k ≤ N,
D2k = H2k (ω2, ω1) 6= 0 or, equivalently, provided H2 does not divide
H2k . In particular, the equilibrium is stable if

D4 =
1
2
{Aω2

2 + 2Bω1ω2 + Cω2
1} 6= 0.

Moreover, arbitrarily close to the origin in R4, there are invariant tori
and the flow on these invariant tori is the linear flow with irrational
slope.
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Stability of L4 for 0 < µ < µ1, µ 6= µ2 and µ 6= µ3

From the values of A, B and C given earlier, compute

D4 = −
36− 541ω2

1ω
2
2 + 644ω4

1ω
4
2

8(1− 4ω2
1ω

2
2)(4− 25ω2

1ω
2
2)
,

With ω2
1ω

2
2 = 27

4 µ(1− µ) solveD4 = 0 and find four real roots

µ =
1
2
± 1

6

√
(3265± 2

√
199945)/483

µ = 0.0109137, µ = 0.130756, µ = 0.869244, µ = 0.989086

The first value µd = 1
2 −

1
6

√
(3265− 2

√
199945)/483 is in the

interval (0, µ1)
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The special case µd

need to carry out normalization to terms of order six
D6 = 4!H4

0 (ω2, ω1) = P/Q

P = −3105
4

+
1338449

48
σ − 489918305

1728
σ2 +

7787081027
6912

σ3

−2052731645
1296

σ4 − 1629138643
324

σ5

+
1879982900

81
σ6 +

368284375
81

σ7,

Q = ω1ω2(ω
2
1 − ω2

2)5(4− 25σ)3(9− 100σ),

σ = ω2
1ω

2
2,
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Remarks

Solve D4 = 0 for σ and substitute into D6 to get D6 ≈ −66.6
Thus L4 is stable at µd

µd = 0.010913667677201 does not appear to have any specific
significance
The significance of µ∗ = 0.01272398874654163 is also not clear,
except that the structure of the family with common period
changes from the “open” case to “bridges”
µ4 < µd < µ∗ < µ3. It would have been nice if µd = µ∗

Instead in this way it gives rise to new research topics
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Remarks to µ near µ2

0 0.05 0.1
0

0.02

0.04

0.06

0.08

0.1

µ <µ2

Long period family, I2 axis

S
ho

rt
 p

er
io

d 
fa

m
ily

,  
I1

 a
xi

s

0 0.05 0.1
0

0.02

0.04

0.06

0.08

0.1

µ=µ2

Long period family, I2 axis
0 0.05 0.1

0

0.02

0.04

0.06

0.08

0.1

µ > µ2

Long period family, I2 axis

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 66 / 68



Remarks to µ near µ3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
µ<µ3

Long period family, I2 axis

S
ho

rt
 p

er
io

d 
fa

m
ily

,  
I1

 a
xi

s

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
µ = µ3

Long period family, I2 axis
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
µ > µ3

Long period family, I2 axis

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 67 / 68



References

1 Deprit, A. and Deprit-Bartholomé, A. 1967: Stability of the
Lagrange points, Astron. J. 72, 173-79.

2 Deprit, A. , Henrard, J., 1970: The Trojan manifold – survey and
conjectures in periodic orbits stability and resonances, (Ed. G.
Giacaglia), Reidel. Publ., Dordrecht.

3 Henrard, J., Meyer, K. R. and Schmidt, D. S., The Trojan Problem:
A Study in Stability and Bifurcation, (unfinished manuscript)

4 Meyer, K. R. and Schmidt, D. S. 1986: The stability of the
Lagrange triangular point and a theorem of Arnold, J. Diff. Eqs.
62(2), 222-36.

5 Schmidt, D. S., 1974: Periodic solutions near a resonant
equilibrium of a Hamiltonian system, Celest. Mech. 9, 91-103.

6 Szebehely, V. 1967: Theory of orbits, Academic Press

D. Schmidt (University of Cincinnati) Periodic Orbits Near L4 November 2012 68 / 68


	Asteroids at L4
	The Circular Restricted Three Body Problem
	Equations of Motion near L4
	Normal Form for the Restricted Problem
	Long Period Orbits 
	Families with a common period
	Numerical Findings
	Generic behavior of long period family
	Application of Arnold's stability theorem

