Families of Periodic Orbits in the Restricted Three Body Problem Near L_4

Dieter Schmidt

University of Cincinnati
Department of Computer Science
Cincinnati, Ohio, USA
Observed Trojan Satellites

http://www.minorplanetcenter.net

Data from Center for Minor Planets, Nov 28, 2012

- Number of objects at L_4: 3416 (Greeks)
 - increased by 95 since January 2012
 - the Trojan Hector (number 624) is among the Greeks
 - 145 objects at L_4 have names assigned to them

- Number of objects at L_5: 2015 (Trojans)
 - increased by 261 since January 2012
 - The Greek Patroclus (number 617) is among the Trojans
 - 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Data from Center for Minor Planets, Nov 28, 2012

Number of objects at L_4 : 3416 (Greeks)
- increased by 95 since January 2012
- the Trojan Hector (number 624) is among the Greeks
- 145 objects at L_4 have names assigned to them

Number of objects at L_5 : 2015 (Trojans)
- increased by 261 since January 2012
- The Greek Patroclus (number 617) is among the Trojans
- 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Data from Center for Minor Planets, Nov 28, 2012

Number of objects at L_4 : 3416 (Greeks)
- increased by 95 since January 2012
- the Trojan Hector (number 624) is among the Greeks
- 145 objects at L_4 have names assigned to them

Number of objects at L_5 : 2015 (Trojans)
- increased by 261 since January 2012
- The Greek Patroclus (number 617) is among the Trojans
- 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Observed Trojan Satellites

Data from Center for Minor Planets, Nov 28, 2012

Number of objects at L_4 : 3416 (Greeks)
- increased by 95 since January 2012
- the Trojan Hector (number 624) is among the Greeks
- 145 objects at L_4 have names assigned to them

Number of objects at L_5 : 2015 (Trojans)
- increased by 261 since January 2012
- The Greek Patroclus (number 617) is among the Trojans
- 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Observed Trojan Satellites

http://www.minorplanetcenter.net

- Data from Center for Minor Planets, Nov 28, 2012
- Number of objects at L_4 : 3416 (Greeks)
 - increased by 95 since January 2012
 - the Trojan Hector (number 624) is among the Greeks
 - 145 objects at L_4 have names assigned to them
- Number of objects at L_5 : 2015 (Trojans)
 - increased by 261 since January 2012
 - The Greek Patroclus (number 617) is among the Trojans
 - 96 objects at L_5 have names assigned to them
- http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Observed Trojan Satellites
http://www.minorplanetcenter.net

- Data from Center for Minor Planets, Nov 28, 2012
- Number of objects at L_4: 3416 (Greeks)
 - increased by 95 since January 2012
 - the Trojan Hector (number 624) is among the Greeks
 - 145 objects at L_4 have names assigned to them
- Number of objects at L_5: 2015 (Trojans)
 - increased by 261 since January 2012
 - The Greek Patroclus (number 617) is among the Trojans
 - 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Data from Center for Minor Planets, Nov 28, 2012

Number of objects at L_4 : 3416 (Greeks)
 - increased by 95 since January 2012
 - the Trojan Hector (number 624) is among the Greeks
 - 145 objects at L_4 have names assigned to them

Number of objects at L_5 : 2015 (Trojans)
 - increased by 261 since January 2012
 - The Greek Patroclus (number 617) is among the Trojans
 - 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Observed Trojan Satellites

http://www.minorplanetcenter.net

- Data from Center for Minor Planets, Nov 28, 2012
- Number of objects at L_4: 3416 (Greeks)
 - increased by 95 since January 2012
 - the Trojan Hector (number 624) is among the Greeks
 - 145 objects at L_4 have names assigned to them
- Number of objects at L_5: 2015 (Trojans)
 - increased by 261 since January 2012
 - The Greek Patroclus (number 617) is among the Trojans
 - 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Observed Trojan Satellites
http://www.minorplanetcenter.net

- Data from Center for Minor Planets, Nov 28, 2012
- Number of objects at \mathcal{L}_4 : 3416 (Greeks)
 - increased by 95 since January 2012
 - the Trojan Hector (number 624) is among the Greeks
 - 145 objects at \mathcal{L}_4 have names assigned to them
- Number of objects at \mathcal{L}_5 : 2015 (Trojans)
 - increased by 261 since January 2012
 - The Greek Patroclus (number 617) is among the Trojans
 - 96 objects at \mathcal{L}_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Data from Center for Minor Planets, Nov 28, 2012

Number of objects at L_4: 3416 (Greeks)
- increased by 95 since January 2012
- the Trojan Hector (number 624) is among the Greeks
- 145 objects at L_4 have names assigned to them

Number of objects at L_5: 2015 (Trojans)
- increased by 261 since January 2012
- The Greek Patroclus (number 617) is among the Trojans
- 96 objects at L_5 have names assigned to them

http://www.minorplanetcenter.net/iau/lists/JupiterTrojans.html
Semi major axis: 4.952 to 5.419, Jupiter’s value is 5.203,363,01
Distribution of the eccentricities

Jupiter’s orbit has an eccentricity of 0.048,392,66

![Distribution of the eccentricities diagram](image)
Distribution of the inclination

The orbit of Jupiter has an inclination of 1.3053 degrees
Distribution of the observed brightness

![Brightness distribution graph]

- Frequency
- Bin count
- Brightness

D. Schmidt (University of Cincinnati)
Data taken from Minor Planet Center

- Orbits are displayed with given orbital elements
- The motion as shown is not valid for longer period of times
- Program does not use numerical integration
Simulation of motion in MATLAB

- Data taken from Minor Planet Center
- Orbits are displayed with given orbital elements
- The motion as shown is not valid for longer period of times
- Program does not use numerical integration
Simulation of motion in MATLAB

- Data taken from Minor Planet Center
- Orbits are displayed with given orbital elements
- The motion as shown is not valid for longer period of times
- Program does not use numerical integration
Simulation of motion in MATLAB

- Data taken from Minor Planet Center
- Orbits are displayed with given orbital elements
- The motion as shown is not valid for longer period of times
- Program does not use numerical integration
In a rotating frame the Hamiltonian of the circular restricted problem of three bodies is

\[H = \frac{1}{2} (y_1^2 + y_2^2) - x_1 y_2 + x_2 y_1 - \frac{(1 - \mu)}{r_1} - \frac{\mu}{r_2}, \]

\((x_1, x_2)\) are the components of the position vector in the rotating frame centered at the center of mass

\((y_1, y_2)\) are their conjugate momenta,

\[r_1 = \sqrt{(x_1 + \mu)^2 + x_2^2} \text{ and } r_2 = \sqrt{(x_1 + \mu - 1)^2 + x_2^2} \] are the distances of the test particle to the two primaries.
In a rotating frame the Hamiltonian of the circular restricted problem of three bodies is

\[H = \frac{1}{2} (y_1^2 + y_2^2) - x_1 y_2 + x_2 y_1 - \frac{(1 - \mu)}{r_1} - \frac{\mu}{r_2}, \]

\((x_1, x_2)\) are the components of the position vector in the rotating frame centered at the center of mass

\((y_1, y_2)\) are their conjugate momenta,

\[r_1 = \sqrt{(x_1 + \mu)^2 + x_2^2} \] and \[r_2 = \sqrt{(x_1 + \mu - 1)^2 + x_2^2} \] are the distances of the test particle to the two primaries.
In a rotating frame the Hamiltonian of the circular restricted problem of three bodies is

\[H = \frac{1}{2} (y_1^2 + y_2^2) - x_1 y_2 + x_2 y_1 - \frac{(1 - \mu)}{r_1} - \frac{\mu}{r_2}, \]

\((x_1, x_2)\) are the components of the position vector in the rotating frame centered at the center of mass

\((y_1, y_2)\) are their conjugate momenta,

\(r_1 = \sqrt{(x_1 + \mu)^2 + x_2^2}\) and \(r_2 = \sqrt{(x_1 + \mu - 1)^2 + x_2^2}\) are the distances of the test particle to the two primaries.
In a rotating frame the Hamiltonian of the circular restricted problem of three bodies is

\[H = \frac{1}{2}(y_1^2 + y_2^2) - x_1 y_2 + x_2 y_1 - \frac{(1 - \mu)}{r_1} - \frac{\mu}{r_2}, \]

\((x_1, x_2)\) are the components of the position vector in the rotating frame centered at the center of mass

\((y_1, y_2)\) are their conjugate momenta,

\(r_1 = \sqrt{(x_1 + \mu)^2 + x_2^2}\) and \(r_2 = \sqrt{(x_1 + \mu - 1)^2 + x_2^2}\) are the distances of the test particle to the two primaries.
The rotating frame of reference of the restricted problem and the location of the equilibrium points
Linearized System near L_4

- Near equilibrium point L_4
 \[
 \begin{align*}
 x_1 &= 1/2 - \mu + X_1 \\
 x_2 &= \sqrt{3}/2 + X_2
 \end{align*}
 \begin{align*}
 y_1 &= -\sqrt{3}/2 + Y_1 \\
 y_2 &= 1/2 - \mu + Y_2
 \end{align*}
 \]

- Expand Hamiltonian function $H = \sum_{k=0} H_k$

- Since $H_1 = 0$ the linearized system is
 \[
 \dot{Z} = J \frac{\partial H_2}{\partial Z} = \begin{bmatrix}
 0 & 1 & 1 & 0 \\
 -1 & 0 & 0 & 1 \\
 -\frac{1}{4} & \frac{\gamma}{4} & 0 & 1 \\
 \frac{\gamma}{4} & \frac{5}{4} & -1 & 0
 \end{bmatrix} Z
 \]

- Abbreviation used: $\gamma = 3\sqrt{3}(1 - 2\mu)$

- For $0 \leq \mu \leq \mu_1$ with $\mu_1 = \frac{1}{2}(1 - \sqrt{\frac{23}{27}})$ the eigenvalues are purely imaginary $\pm i\omega_1$, $\pm i\omega_2$
The frequencies in \(0 \leq \mu \leq \mu_1 \)

\[
\begin{align*}
\omega_1 &= \sqrt{(1 + \sqrt{1 - 27\mu(1 - \mu)})/2} \\
&= 1 - \frac{27\mu}{8} - \frac{3213\mu^2}{128} + \cdots \\
\omega_2 &= \sqrt{(1 - \sqrt{1 - 27\mu(1 - \mu)})/2} \\
&= \frac{3\sqrt{3\mu}}{2}(1 + \frac{23\mu}{8} + \frac{4439\mu^2}{128} + \cdots)
\end{align*}
\]

Problem at \(\mu = 0 \) (vertical tangent)
Also problem at \(\mu_1 \) due to repeated eigenvalues when \(\omega_1 = \omega_2 = \frac{\sqrt{2}}{2} \)
Symplectic linear transformation for $0 < \mu < \mu_1$

\[
\begin{bmatrix}
X_1 \\
X_2 \\
Y_1 \\
Y_2
\end{bmatrix} = RS \begin{bmatrix}
x_1 \\
x_2 \\
y_1 \\
y_2
\end{bmatrix}
\]

\[
R = \begin{bmatrix}
\gamma & \gamma & 8\sqrt{\omega_1} & -8\sqrt{\omega_2} \\
-3 - 4\omega_1^2 & -7 + 4\omega_1^2 & 0 & 0 \\
3 - 4\omega_1^2 & -1 + 4\omega_1^2 & \gamma\sqrt{\omega_1} & -\gamma\sqrt{\omega_2} \\
\gamma & \gamma & (5 - 4\omega_1^2)\sqrt{\omega_1} & -(1 + 4\omega_1^2)\sqrt{\omega_2}
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
\frac{1}{2\sqrt{\omega_1(-1+2\omega_1^2)(3+4\omega_1^2)}} & 0 & 0 & 0 \\
0 & \frac{1}{2\sqrt{\omega_2(7-4\omega_1^2)(-1+2\omega_1^2)}} & 0 & 0 \\
0 & 0 & \frac{1}{2\sqrt{(-1+2\omega_1^2)(3+4\omega_1^2)}} & 0 \\
0 & 0 & 0 & \frac{1}{2\sqrt{(7-4\omega_1^2)(-1+2\omega_1^2)}}
\end{bmatrix}
\]
Linearized system in normal form, but the transformation is singular at $\mu = 0$ and $\mu = \mu_1$

$$H = \frac{\omega_1}{2} (x_1^2 + y_1^2) - \frac{\omega_2}{2} (x_2^2 + y_2^2)$$

- Two harmonic oscillators with frequencies ω_1 and ω_2
- The Hamiltonian function is indefinite
- $\omega_1 \geq \omega_2$
- **Short period family:** $x_2 = y_2 = 0$ gives $\ddot{x}_1 + \omega_1^2 x_1 = 0$ periodic solution with period $2\pi/\omega_1$
- **Long period family:** $x_1 = y_1 = 0$ gives $\ddot{x}_2 + \omega_2^2 x_2 = 0$ periodic solution with period $2\pi/\omega_2$
Linearized system in normal form, but the transformation is singular at \(\mu = 0 \) and \(\mu = \mu_1 \)

\[
H = \frac{\omega_1}{2} (x_1^2 + y_1^2) - \frac{\omega_2}{2} (x_2^2 + y_2^2)
\]

- Two harmonic oscillators with frequencies \(\omega_1 \) and \(\omega_2 \)
- The Hamiltonian function is indefinite
- \(\omega_1 \geq \omega_2 \)
- **Short period family:** \(x_2 = y_2 = 0 \) gives \(\ddot{x}_1 + \omega_1^2 x_1 = 0 \) periodic solution with period \(2\pi / \omega_1 \)
- **Long period family:** \(x_1 = y_1 = 0 \) gives \(\ddot{x}_2 + \omega_2^2 x_2 = 0 \) periodic solution with period \(2\pi / \omega_2 \)
Linearized system in normal form, but the transformation is singular at $\mu = 0$ and $\mu = \mu_1$

$$H = \frac{\omega_1}{2}(x_1^2 + y_1^2) - \frac{\omega_2}{2}(x_2^2 + y_2^2)$$

- Two harmonic oscillators with frequencies ω_1 and ω_2
- The Hamiltonian function is indefinite
 - $\omega_1 \geq \omega_2$
- **Short period family**: $x_2 = y_2 = 0$ gives $\ddot{x}_1 + \omega_1^2 x_1 = 0$ periodic solution with period $2\pi/\omega_1$
- **Long period family**: $x_1 = y_1 = 0$ gives $\ddot{x}_2 + \omega_2^2 x_2 = 0$ periodic solution with period $2\pi/\omega_2$
Linearized system in normal form, but the transformation is singular at $\mu = 0$ and $\mu = \mu_1$

\[H = \frac{\omega_1}{2} (x_1^2 + y_1^2) - \frac{\omega_2}{2} (x_2^2 + y_2^2) \]

- Two harmonic oscillators with frequencies ω_1 and ω_2
- The Hamiltonian function is indefinite
- $\omega_1 \geq \omega_2$
- **Short period family:** $x_2 = y_2 = 0$ gives $\ddot{x}_1 + \omega_1^2 x_1 = 0$ periodic solution with period $2\pi/\omega_1$
- **Long period family:** $x_1 = y_1 = 0$ gives $\ddot{x}_2 + \omega_2^2 x_2 = 0$ periodic solution with period $2\pi/\omega_2$
Linearized system in normal form, but the transformation is singular at $\mu = 0$ and $\mu = \mu_1$

\[H = \frac{\omega_1}{2}(x_1^2 + y_1^2) - \frac{\omega_2}{2}(x_2^2 + y_2^2) \]

- Two harmonic oscillators with frequencies ω_1 and ω_2
- The Hamiltonian function is indefinite
- $\omega_1 \geq \omega_2$
- **Short period family:** $x_2 = y_2 = 0$ gives $\ddot{x}_1 + \omega_1^2 x_1 = 0$ periodic solution with period $2\pi/\omega_1$
- **Long period family:** $x_1 = y_1 = 0$ gives $\ddot{x}_2 + \omega_2^2 x_2 = 0$ periodic solution with period $2\pi/\omega_2$
Linearized system in normal form, but the transformation is singular at \(\mu = 0 \) and \(\mu = \mu_1 \)

\[
H = \frac{\omega_1}{2}(x_1^2 + y_1^2) - \frac{\omega_2}{2}(x_2^2 + y_2^2)
\]

- Two harmonic oscillators with frequencies \(\omega_1 \) and \(\omega_2 \)
- The Hamiltonian function is indefinite
- \(\omega_1 \geq \omega_2 \)
- **Short period family:** \(x_2 = y_2 = 0 \) gives \(\ddot{x}_1 + \omega_1^2 x_1 = 0 \) periodic solution with period \(2\pi/\omega_1 \)
- **Long period family:** \(x_1 = y_1 = 0 \) gives \(\ddot{x}_2 + \omega_2^2 x_2 = 0 \) periodic solution with period \(2\pi/\omega_2 \)
The Variational Equations near L_4

- The differential equations in rotating coordinates

\[
\begin{align*}
\ddot{x}_1 - 2\dot{x}_2 &= \Omega x_1 \\
\ddot{x}_2 + 2\dot{x}_1 &= \Omega x_2
\end{align*}
\]

with $\Omega(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2) - \frac{(1-\mu)}{r_1} - \frac{\mu}{r_2}$

- The variational equations near L_4: $x_1 = \frac{1}{2} - \mu + \xi_1$, $x_2 = \frac{\sqrt{3}}{2} + \xi_2$

\[
\begin{align*}
\dddot{\xi}_1 - 2\dddot{\xi}_2 &= \frac{3}{4}\xi_1 + \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi_2 \\
\dddot{\xi}_2 + 2\dddot{\xi}_1 &= \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi_1 + \frac{9}{4}\xi_2
\end{align*}
\]

- Terms on right hand side can be put into diagonal form
The Variational Equations near L_4

- The differential equations in rotating coordinates

\[\ddot{x}_1 - 2\dot{x}_2 = \Omega x_1 \]
\[\ddot{x}_2 + 2\dot{x}_1 = \Omega x_2 \]

with $\Omega(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2) - \frac{(1-\mu)}{r_1} - \frac{\mu}{r_2}$

- The variational equations near L_4: $x_1 = \frac{1}{2} - \mu + \xi_1$, $x_2 = \frac{\sqrt{3}}{2} + \xi_2$

\[\ddot{\xi}_1 - 2\dot{\xi}_2 = \frac{3}{4}\xi_1 + \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi_2 \]
\[\ddot{\xi}_2 + 2\dot{\xi}_1 = \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi_1 + \frac{9}{4}\xi_2 \]

- Terms on right hand side can be put into diagonal form
The Variational Equations near \mathcal{L}_4

- The differential equations in rotating coordinates

\[
\begin{align*}
\ddot{x}_1 - 2\dot{x}_2 &= \Omega x_1 \\
\ddot{x}_2 + 2\dot{x}_1 &= \Omega x_2
\end{align*}
\]

with $\Omega(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2) - \frac{(1-\mu)}{r_1} - \frac{\mu}{r_2}$

- The variational equations near \mathcal{L}_4: $x_1 = \frac{1}{2} - \mu + \xi_1$, $x_2 = \frac{\sqrt{3}}{2} + \xi_2$

\[
\begin{align*}
\ddot{\xi}_1 - 2\ddot{\xi}_2 &= \frac{3}{4}\xi_1 + \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi_2 \\
\ddot{\xi}_2 + 2\ddot{\xi}_1 &= \frac{3\sqrt{3}}{4}(1 - 2\mu)\xi_1 + \frac{9}{4}\xi_2
\end{align*}
\]

- Terms on right hand side can be put into diagonal form
Construction of the Principle Frame near L_4
rotation by angle α with $\tan 2\alpha = -\sqrt{3}(1 - 2\mu)$
Solution to transformed variational Equations

- $\xi = T\bar{\xi}$ is a rotation in the ξ_1–ξ_2 plane. It results in equations of the same form

\[
\ddot{\xi}_1 - 2\dot{\xi}_2 = \lambda_1 \bar{\xi}_1 \\
\ddot{\xi}_2 + 2\dot{\xi}_1 = \lambda_2 \bar{\xi}_2
\]

- Form of the solution

\[
\bar{\xi}_1 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t \\
\bar{\xi}_2 = C_1 \sin \omega_1 t + C_2 \sin \omega_2 t
\]

- Short Period Orbit: Set $A_2 = C_2 = 0$ and find $A_1 = -2\frac{\omega_1}{\omega_1^2 + \lambda_1} C_1$

- Long Period Orbit: Set $A_1 = C_1 = 0$ and find $A_2 = -2\frac{\omega_2}{\omega_2^2 + \lambda_1} C_2$

- Note $|A_1/C_1| > 1$ and also $|A_2/C_2| > 1$ so that semi major axes of both ellipses are along $\bar{\xi}_1$ axis

- Both short and long period orbits are retrograde
Solution to transformed variational Equations

- $\xi = T\xi$ is a rotation in the ξ_1–ξ_2 plane. It results in equations of the same form

$$\dddot{\xi}_1 - 2\ddot{\xi}_2 = \lambda_1 \xi_1$$
$$\dddot{\xi}_2 + 2\ddot{\xi}_1 = \lambda_2 \xi_2$$

- Form of the solution

$$\xi_1 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$
$$\xi_2 = C_1 \sin \omega_1 t + C_2 \sin \omega_2 t$$

- Short Period Orbit: Set $A_2 = C_2 = 0$ and find $A_1 = -\frac{2\omega_1}{\omega_1^2 + \lambda_1} C_1$

- Long Period Orbit: Set $A_1 = C_1 = 0$ and find $A_2 = -\frac{2\omega_2}{\omega_2^2 + \lambda_1} C_2$

- Note $|A_1/C_1| > 1$ and also $|A_2/C_2| > 1$ so that semi major axes of both ellipses are along ξ_1 axis

- Both short and long period orbits are retrograde
Solution to transformed variational Equations

- \(\xi = T\bar{\xi} \) is a rotation in the \(\xi_1-\xi_2 \) plane. It results in equations of the same form

\[
\ddot{\xi}_1 - 2\dot{\xi}_2 = \lambda_1 \bar{\xi}_1 \\
\ddot{\xi}_2 + 2\dot{\xi}_1 = \lambda_2 \bar{\xi}_2
\]

- Form of the solution

\[
\bar{\xi}_1 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t \\
\bar{\xi}_2 = C_1 \sin \omega_1 t + C_2 \sin \omega_2 t
\]

- Short Period Orbit: Set \(A_2 = C_2 = 0 \) and find \(A_1 = -\frac{2\omega_1}{\omega_1^2 + \lambda_1} C_1 \)

- Long Period Orbit: Set \(A_1 = C_1 = 0 \) and find \(A_2 = -\frac{2\omega_2}{\omega_2^2 + \lambda_1} C_2 \)

- Note \(|A_1/C_1| > 1 \) and also \(|A_2/C_2| > 1 \) so that semi major axes of both ellipses are along \(\bar{\xi}_1 \) axis

- Both short and long period orbits are retrograde
Solution to transformed variational Equations

- $\xi = T\bar{\xi}$ is a rotation in the ξ_1–ξ_2 plane. It results in equations of the same form

$$\ddot{\xi}_1 - 2\dot{\xi}_2 = \lambda_1 \bar{\xi}_1$$
$$\ddot{\xi}_2 + 2\dot{\xi}_1 = \lambda_2 \bar{\xi}_2$$

- Form of the solution

$$\bar{\xi}_1 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$
$$\bar{\xi}_2 = C_1 \sin \omega_1 t + C_2 \sin \omega_2 t$$

- Short Period Orbit: Set $A_2 = C_2 = 0$ and find $A_1 = -\frac{2\omega_1}{\omega_1^2 + \lambda_1} C_1$

- Long Period Orbit: Set $A_1 = C_1 = 0$ and find $A_2 = -\frac{2\omega_2}{\omega_2^2 + \lambda_1} C_2$

- Note $|A_1/C_1| > 1$ and also $|A_2/C_2| > 1$ so that semi major axes of both ellipses are along $\bar{\xi}_1$ axis

- Both short and long period orbits are retrograde
Solution to transformed variational Equations

- $\xi = T\bar{\xi}$ is a rotation in the ξ_1–ξ_2 plane. It results in equations of the same form

$$\ddot{\xi}_1 - 2\dot{\xi}_2 = \lambda_1 \bar{\xi}_1$$
$$\ddot{\xi}_2 + 2\dot{\xi}_1 = \lambda_2 \bar{\xi}_2$$

- Form of the solution

$$\bar{\xi}_1 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$$
$$\bar{\xi}_2 = C_1 \sin \omega_1 t + C_2 \sin \omega_2 t$$

- Short Period Orbit: Set $A_2 = C_2 = 0$ and find $A_1 = -\frac{2\omega_1}{\omega_1^2 + \lambda_1} C_1$

- Long Period Orbit: Set $A_1 = C_1 = 0$ and find $A_2 = -\frac{2\omega_2}{\omega_2^2 + \lambda_1} C_2$

- Note $|A_1/C_1| > 1$ and also $|A_2/C_2| > 1$ so that semi major axes of both ellipses are along $\bar{\xi}_1$ axis

- Both short and long period orbits are retrograde
Solution to transformed variational Equations

- $\xi = T\bar{\xi}$ is a rotation in the ξ_1–ξ_2 plane. It results in equations of the same form

$$
\ddot{\xi}_1 - 2\dot{\xi}_2 = \lambda_1 \xi_1
$$

$$
\ddot{\xi}_2 + 2\dot{\xi}_1 = \lambda_2 \xi_2
$$

- Form of the solution

$$
\bar{\xi}_1 = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t
$$

$$
\bar{\xi}_2 = C_1 \sin \omega_1 t + C_2 \sin \omega_2 t
$$

- Short Period Orbit: Set $A_2 = C_2 = 0$ and find $A_1 = -\frac{2\omega_1}{\omega_1^2 + \lambda_1} C_1$

- Long Period Orbit: Set $A_1 = C_1 = 0$ and find $A_2 = -\frac{2\omega_2}{\omega_2^2 + \lambda_1} C_2$

- Note $|A_1/C_1| > 1$ and also $|A_2/C_2| > 1$ so that semi major axes of both ellipses are along $\bar{\xi}_1$ axis

- Both short and long period orbits are retrograde
Eccentricity of short and long periodic orbits around L_4 in the orbital plane

\[e_1 = \sqrt{1 - \frac{(\omega_1^2 + \lambda_2)^2}{4\omega_1^2}} \quad e_2 = \sqrt{1 - \frac{(\omega_2^2 + \lambda_2)^2}{4\omega_2^2}} \]

Eccentricity of the short period (blue) and long period (red) orbits for μ in $(0, \mu_1)$
Principle Frame with short and long period orbits

principle system of coordinates at L4: drawn in green, \(\mu = 0.01 \)
Short period orbits

\[\mu (S-J) \]

\[\mu_1 \]
The family of short period orbits emanating from \mathcal{L}_4 is the backbone of the *Trojan web*.

There is of course a symmetric family emanating from \mathcal{L}_5.

In the inertial frame of reference both families look like a set a moderately perturbed Keplerian orbits with an eccentricity going from zero at \mathcal{L}_4 (or \mathcal{L}_5) to a rather large value when they meet the symmetric family emanating from \mathcal{L}_3.

The argument of pericenter goes from 60° ahead (or behind for \mathcal{L}_5) of the perturbing body to 180° ahead (or behind for \mathcal{L}_5).

As seen from the two panels of the figure, the orbits do not change much with the mass-ratio.
The family of short period orbits emanating from L_4 is the backbone of the *Trojan web*.

There is of course a symmetric family emanating from L_5.

In the inertial frame of reference both families look like a set a moderately perturbed Keplerian orbits with an eccentricity going from zero at L_4 (or L_5) to a rather large value when they meet the symmetric family emanating from L_3.

The argument of pericenter goes from 60° ahead (or behind for L_5) of the perturbing body to 180° ahead (or behind for L_5).

As seen from the two panels of the figure, the orbits do not change much with the mass-ratio.
The family of short period orbits emanating from \mathcal{L}_4 is the backbone of the *Trojan web*.

There is of course a symmetric family emanating from \mathcal{L}_5.

In the inertial frame of reference both families look like a set a moderately perturbed Keplerian orbits with an eccentricity going from zero at \mathcal{L}_4 (or \mathcal{L}_5) to a rather large value when they meet the symmetric family emanating from \mathcal{L}_3.

The argument of pericenter goes from 60° ahead (or behind for \mathcal{L}_5) of the perturbing body to 180° ahead (or behind for \mathcal{L}_5).

As seen from the two panels of the figure, the orbits do not change much with the mass-ratio.
The family of short period orbits emanating from L_4 is the backbone of the *Trojan web*.

There is of course a symmetric family emanating from L_5.

In the inertial frame of reference both families look like a set a moderately perturbed Keplerian orbits with an eccentricity going from zero at L_4 (or L_5) to a rather large value when they meet the symmetric family emanating from L_3.

The argument of pericenter goes from 60° ahead (or behind for L_5) of the perturbing body to 180° ahead (or behind for L_5).

As seen from the two panels of the figure, the orbits do not change much with the mass-ratio.
The family of short period orbits emanating from \mathcal{L}_4 is the backbone of the *Trojan web*.

There is of course a symmetric family emanating from \mathcal{L}_5.

In the inertial frame of reference both families look like a set a moderately perturbed Keplerian orbits with an eccentricity going from zero at \mathcal{L}_4 (or \mathcal{L}_5) to a rather large value when they meet the symmetric family emanating from \mathcal{L}_3.

The argument of pericenter goes from 60° ahead (or behind for \mathcal{L}_5) of the perturbing body to 180° ahead (or behind for \mathcal{L}_5).

As seen from the two panels of the figure, the orbits do not change much with the mass-ratio.
Family of symmetric periodic orbits emanating from \mathcal{L}_3

\[\mu, (S-J), \mu_1 \]
Existence of short periodic orbits

Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4

Lyapunov’s theorem gives no information about the global behavior of the short period family

The general theory about the continuation of periodic orbits gives some information

A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:

- the orbit tends to infinity;
- the period tends to infinity;
- the orbit tends to an equilibrium point;
- the orbit is such that for the monodromy matrix $\text{Trace} = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

- Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4.

- Lyapunov’s theorem gives no information about the global behavior of the short period family.

- The general theory about the continuation of periodic orbits gives some information.

- A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
 - the orbit tends to infinity;
 - the period tends to infinity;
 - the orbit tends to an equilibrium point;
 - the orbit is such that for the monodromy matrix $\text{Trace} = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4

Lyapunov’s theorem gives no information about the global behavior of the short period family

The general theory about the continuation of periodic orbits gives some information

A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
- the orbit tends to infinity;
- the period tends to infinity;
- the orbit tends to an equilibrium point;
- the orbit is such that for the monodromy matrix $\text{Trace} = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

- Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4

- Lyapunov’s theorem gives no information about the global behavior of the short period family

- The general theory about the continuation of periodic orbits gives some information

- A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
 - the orbit tends to infinity;
 - the period tends to infinity;
 - the orbit tends to an equilibrium point;
 - the orbit is such that for the monodromy matrix $Trace = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

- Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4
- Lyapunov’s theorem gives no information about the global behavior of the short period family
- The general theory about the continuation of periodic orbits gives some information
- A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
 - the orbit tends to infinity;
 - the period tends to infinity;
 - the orbit tends to an equilibrium point;
 - the orbit is such that for the monodromy matrix $\text{Trace} = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

- Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4
- Lyapunov’s theorem gives no information about the global behavior of the short period family
- The general theory about the continuation of periodic orbits gives some information
- A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
 - the orbit tends to infinity;
 - the period tends to infinity;
 - the orbit tends to an equilibrium point;
 - the orbit is such that for the monodromy matrix $Trace = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

- Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near \mathcal{L}_4

- Lyapunov’s theorem gives no information about the global behavior of the short period family

- The general theory about the continuation of periodic orbits gives some information

- A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
 - the orbit tends to infinity;
 - the period tends to infinity;
 - the orbit tends to an equilibrium point;
 - the orbit is such that for the monodromy matrix $Trace = 2$ and bifurcations or other things can happen.
Existence of short periodic orbits

- Since $\omega_1 > \omega_2$ for $0 < \mu < \mu_1$ the short periodic orbits constructed in the linear system will persist in the nonlinear system at least near L_4
- Lyapunov’s theorem gives no information about the global behavior of the short period family
- The general theory about the continuation of periodic orbits gives some information
- A natural family of periodic orbits of a two-degree of freedom Hamiltonian system with no other first integral than the Hamiltonian can be continued until one of the following things happens:
 - the orbit tends to infinity;
 - the period tends to infinity;
 - the orbit tends to an equilibrium point;
 - the orbit is such that for the monodromy matrix $\text{Trace} = 2$ and bifurcations or other things can happen.
Trace for characteristic exponents

- Short period orbit
- Long period orbit

D. Schmidt (University of Cincinnati)
Periodic Orbits Near L_4
November 2012 23 / 68
Resonance Cases for $\mu = \mu_{p/q}$ we have $\omega_1/\omega_2 = p/q$

Special values for the mass ratio $\mu = \mu_p$ when $\omega_1/\omega_2 = p$

<table>
<thead>
<tr>
<th>μ_1</th>
<th>μ_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.038520896504551</td>
<td>0.002912184522396</td>
</tr>
<tr>
<td>μ_2</td>
<td>μ_8</td>
</tr>
<tr>
<td>0.024293897142052</td>
<td>0.002249196513710</td>
</tr>
<tr>
<td>μ^{**}</td>
<td>μ_9</td>
</tr>
<tr>
<td>0.02072</td>
<td>0.001787848394744</td>
</tr>
<tr>
<td>μ_3</td>
<td>μ_{10}</td>
</tr>
<tr>
<td>0.013516016022453</td>
<td>0.001454405739621</td>
</tr>
<tr>
<td>μ^*</td>
<td>μ_{11}</td>
</tr>
<tr>
<td>0.012723988746542</td>
<td>0.001205829591109</td>
</tr>
<tr>
<td>μ_{EM}</td>
<td>μ_{12}</td>
</tr>
<tr>
<td>0.01215002</td>
<td>0.001015696721082</td>
</tr>
<tr>
<td>μ_d</td>
<td>μ_{SJ}</td>
</tr>
<tr>
<td>0.010913667677201</td>
<td>0.000953875</td>
</tr>
<tr>
<td>μ_4</td>
<td>μ_{13}</td>
</tr>
<tr>
<td>0.008270372663897</td>
<td>0.000867085298404</td>
</tr>
<tr>
<td>μ_5</td>
<td>μ_{14}</td>
</tr>
<tr>
<td>0.005509202949840</td>
<td>0.000748764338855</td>
</tr>
<tr>
<td>μ_6</td>
<td>μ_{15}</td>
</tr>
<tr>
<td>0.003911084259658</td>
<td>0.000653048708761</td>
</tr>
</tbody>
</table>
The case ω_1/ω_2 rational is of special interest, since it is the organizing center for many interesting bifurcations and the reason for instabilities.

For ω_1/ω_2 irrational the normal form would be

$$H(I_1, I_2, \phi_1, \phi_2) = \omega_1 I_1 - \omega_2 I_2 + K(I_1, I_2),$$

but transformation does not converge.

The solution would be invariant tori: $I_1 = c_1$, $I_2 = c_2$ with linear flows of constant slope.

The question is: Which tori exist, when ω_1/ω_2 is rational and normalization is carried out only to a finite order?

Only when ω_1/ω_2 is not an integer can the long periodic orbits with period $2\pi/\omega_2$ be guaranteed by Liapunov's theorem.
The case ω_1/ω_2 rational is of special interest, since it is the organizing center for many interesting bifurcations and the reason for instabilities.

For ω_1/ω_2 irrational the normal form would be

$$H(l_1, l_2, \phi_1, \phi_2) = \omega_1 l_1 - \omega_2 l_2 + K(l_1, l_2),$$

but transformation does not converge

- The solution would be invariant tori: $l_1 = c_1, \ l_2 = c_2$ with linear flows of constant slope
- The question is: Which tori exist, when ω_1/ω_2 is rational and normalization is carried out only to a finite order?
- Only when ω_1/ω_2 is not an integer can the long periodic orbits with period $2\pi/\omega_2$ be guaranteed by Liapunov’s theorem.
The case $\frac{\omega_1}{\omega_2}$ rational is of special interest, since it is the organizing center for many interesting bifurcations and the reason for instabilities.

For $\frac{\omega_1}{\omega_2}$ irrational the normal form would be

$$H(l_1, l_2, \phi_1, \phi_2) = \omega_1 l_1 - \omega_2 l_2 + K(l_1, l_2),$$

but transformation does not converge.

The solution would be invariant tori: $l_1 = c_1$, $l_2 = c_2$ with linear flows of constant slope.

The question is: Which tori exist, when $\frac{\omega_1}{\omega_2}$ is rational and normalization is carried out only to a finite order?

Only when $\frac{\omega_1}{\omega_2}$ is not an integer can the long periodic orbits with period $2\pi/\omega_2$ be guaranteed by Liapunov’s theorem.
The case ω_1/ω_2 rational is of special interest, since it is the organizing center for many interesting bifurcations and the reason for instabilities.

For ω_1/ω_2 irrational the normal form would be

$$H(l_1, l_2, \phi_1, \phi_2) = \omega_1 l_1 - \omega_2 l_2 + K(l_1, l_2),$$

but transformation does not converge.

The solution would be invariant tori: $l_1 = c_1, l_2 = c_2$ with linear flows of constant slope.

The question is: Which tori exist, when ω_1/ω_2 is rational and normalization is carried out only to a finite order?

Only when ω_1/ω_2 is not an integer can the long periodic orbits with period $2\pi/\omega_2$ be guaranteed by Liapunov’s theorem.
The case ω_1/ω_2 rational is of special interest, since it is the organizing center for many interesting bifurcations and the reason for instabilities.

For ω_1/ω_2 irrational the normal form would be

$$H(l_1, l_2, \phi_1, \phi_2) = \omega_1 l_1 - \omega_2 l_2 + K(l_1, l_2),$$

but transformation does not converge.

The solution would be invariant tori: $l_1 = c_1$, $l_2 = c_2$ with linear flows of constant slope.

The question is: Which tori exist, when ω_1/ω_2 is rational and normalization is carried out only to a finite order?

Only when ω_1/ω_2 is not an integer can the long periodic orbits with period $2\pi/\omega_2$ be guaranteed by Liapunov’s theorem.
Normal Form in Action Angle Variables for $\mu = \mu_{p/q}$

- $\mu_{p/q}$ such that $\omega_1/\omega_2 = p/q$ with $p > q$ and $p + q \geq 4$

$$H = \omega_1 l_1 - \omega_2 l_2 + \varepsilon^2 (\lambda_1 l_1 - \lambda_2 l_2 + \frac{A}{2} l_1^2 + Bl_1 l_2 + \frac{C}{2} l_2^2) + \cdots + \varepsilon^{p+q-2} l_1^{p/2} l_2^{q/2} G \cos \psi + \cdots$$

$$\psi = q\phi_1 + p\phi_2 + \alpha$$

$$\dot{l}_1 = -\varepsilon^{p+q-2} l_1^{p/2} l_2^{q/2} qG \sin \psi + \cdots$$

$$\dot{l}_2 = -\varepsilon^{p+q-2} l_1^{p/2} l_2^{q/2} pG \sin \psi + \cdots$$

$$\dot{\phi}_1 = -p\lambda - \varepsilon^2 (\lambda_1 + Al_1 + Bl_2) + \cdots$$

$$\dot{\phi}_2 = q\lambda - \varepsilon^2 (-\lambda_2 + Bl_1 + Cl_2) + \cdots$$
Normal Form in Action Angle Variables for $\mu = \mu_{p/q}$

- $\mu_{p/q}$ such that $\omega_1/\omega_2 = p/q$ with $p > q$ and $p + q \geq 4$

\[
H = \omega_1 I_1 - \omega_2 I_2 + \varepsilon^2 \left(\lambda_1 I_1 - \lambda_2 I_2 + \frac{A}{2} I_1^2 + B I_1 I_2 + \frac{C}{2} I_2^2 \right) + \ldots + \varepsilon^{p+q-2} I_1^{p/2} I_2^{q/2} G \cos \psi + \ldots
\]

- $\psi = q\phi_1 + p\phi_2 + \alpha$

\[
\begin{align*}
\dot{\phi}_1 &= -p\lambda - \varepsilon^2 (\lambda_1 + A I_1 + B I_2) + \ldots \\
\dot{\phi}_2 &= q\lambda - \varepsilon^2 (-\lambda_2 + B I_1 + C I_2) + \ldots \\
\end{align*}
\]

\[
\dot{I}_1 = -\varepsilon^{p+q-2} I_1^{p/2} I_2^{q/2} qG \sin \psi + \ldots \\
\dot{I}_2 = -\varepsilon^{p+q-2} I_1^{p/2} I_2^{q/2} pG \sin \psi + \ldots
\]
Normal Form in Action Angle Variables for $\mu = \mu_{p/q}$

- $\mu_{p/q}$ such that $\omega_1/\omega_2 = p/q$ with $p > q$ and $p + q \geq 4$

$$H = \omega_1 I_1 - \omega_2 I_2 + \varepsilon^2 (\lambda_1 I_1 - \lambda_2 I_2 + \frac{A}{2} I_1^2 + Bl_1 l_2 + \frac{C}{2} I_2^2)$$
$$+ \cdots + \varepsilon^{p+q-2} I_1^{p/2} I_2^{q/2} G \cos \psi + \cdots$$

- $\psi = q\phi_1 + p\phi_2 + \alpha$

$$\dot{I}_1 = -\varepsilon^{p+q-2} I_1^{p/2} I_2^{q/2} q G \sin \psi + \cdots$$
$$\dot{I}_2 = -\varepsilon^{p+q-2} I_1^{p/2} I_2^{q/2} p G \sin \psi + \cdots$$
$$\dot{\phi}_1 = -p\lambda - \varepsilon^2 (\lambda_1 + Al_1 + Bl_2) + \cdots$$
$$\dot{\phi}_2 = q\lambda - \varepsilon^2 (-\lambda_2 + Bl_1 + Cl_2) + \cdots$$
Normal Form in Action Angle Variables for $\mu = \mu_{p/q}$

- $\mu_{p/q}$ such that $\omega_1/\omega_2 = p/q$ with $p > q$ and $p + q \geq 4$

\[
H = \omega_1 l_1 - \omega_2 l_2 + \epsilon^2 (\lambda_1 l_1 - \lambda_2 l_2 + \frac{A}{2} l_1^2 + Bl_1 l_2 + \frac{C}{2} l_2^2) + \cdots + \epsilon^{p+q-2} l_1^{p/2} l_2^{q/2} G \cos \psi + \cdots
\]

- $\psi = q\phi_1 + p\phi_2 + \alpha$

\[
\begin{align*}
\dot{l}_1 &= -\epsilon^{p+q-2} l_1^{p/2} l_2^{q/2} qG \sin \psi + \cdots \\
\dot{l}_2 &= -\epsilon^{p+q-2} l_1^{p/2} l_2^{q/2} pG \sin \psi + \cdots \\
\dot{\phi}_1 &= -p\lambda - \epsilon^2 (\lambda_1 + Al_1 + Bl_2) + \cdots \\
\dot{\phi}_2 &= q\lambda - \epsilon^2 (-\lambda_2 + Bl_1 + Cl_2) + \cdots
\end{align*}
\]
Periodic Orbits Derived from Normal Form

Condition for periodic orbit to exist for $\varepsilon \neq 0$:
- Nontrivial characteristic multipliers can’t be 1
- Otherwise solve the bifurcation equations to get periodic orbit
- One equation can be replaced by Hamiltonian
- Use Fredholm alternative theorem to solve equations
- If an action variable is close to 0 switch to Cartesian coordinates

Results:
- Short period: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $I_1 > 0$ and $I_2 \approx 0$
- Long period: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $I_1 \approx 0$ and $I_2 > 0$
- Common period: $T_0 \approx \frac{2\pi}{\lambda}$. Family $I_1 > 0$ and $I_2 > 0$

Abbreviation used

$$M = qA + pB$$
$$N = qB + pC$$
$$\sigma = q\lambda_1 - p\lambda_2$$
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for $\varepsilon \neq 0$:
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - Short period: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $I_1 > 0$ and $I_2 \approx 0$
 - Long period: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $I_1 \approx 0$ and $I_2 > 0$
 - Common period: $T_0 \approx \frac{2\pi}{\lambda}$. Family $I_1 > 0$ and $I_2 > 0$

- Abbreviation used

\[
\begin{align*}
M &= qA + pB \\
N &= qB + pC \\
\sigma &= q\lambda_1 - p\lambda_2
\end{align*}
\]
Condition for periodic orbit to exist for $\epsilon \neq 0$:
- Nontrivial characteristic multipliers can’t be 1
- Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

Results:
- Short period: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $I_1 > 0$ and $I_2 \approx 0$
- Long period: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $I_1 \approx 0$ and $I_2 > 0$
- Common period: $T_0 \approx \frac{2\pi}{\lambda}$. Family $I_1 > 0$ and $I_2 > 0$

Abbreviation used:

$$
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
$$
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for $\varepsilon \neq 0$:
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - Short period: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $l_1 > 0$ and $l_2 \approx 0$
 - Long period: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $l_1 \approx 0$ and $l_2 > 0$
 - Common period: $T_0 \approx \frac{2\pi}{\lambda}$. Family $l_1 > 0$ and $l_2 > 0$

- Abbreviation used

\[
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
\]
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for \(\varepsilon \neq 0
 \):
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - Short period: \(T_1 \approx \frac{2\pi}{\lambda_1} \). Family near \(I_1 > 0 \) and \(I_2 \approx 0 \)
 - Long period: \(T_2 \approx \frac{2\pi}{\lambda_2} \). Family near \(I_1 \approx 0 \) and \(I_2 > 0 \)
 - Common period: \(T_0 \approx \frac{2\pi}{\lambda} \). Family \(I_1 > 0 \) and \(I_2 > 0 \)

- Abbreviation used

\[
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
\]
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for $\varepsilon \neq 0$:
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - Short period: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $l_1 > 0$ and $l_2 \approx 0$
 - Long period: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $l_1 \approx 0$ and $l_2 > 0$
 - Common period: $T_0 \approx \frac{2\pi}{\lambda}$. Family $l_1 > 0$ and $l_2 > 0$

- Abbreviation used

\[
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
\]
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for $\varepsilon \neq 0$:
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - Short period: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $l_1 > 0$ and $l_2 \approx 0$
 - Long period: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $l_1 \approx 0$ and $l_2 > 0$
 - Common period: $T_0 \approx \frac{2\pi}{\lambda}$. Family $l_1 > 0$ and $l_2 > 0$

- Abbreviation used

\[
\begin{align*}
M &= qA + pB \\
N &= qB + pC \\
\sigma &= q\lambda_1 - p\lambda_2
\end{align*}
\]
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for $\varepsilon \neq 0$:
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - **Short period**: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $I_1 > 0$ and $I_2 \approx 0$
 - **Long period**: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $I_1 \approx 0$ and $I_2 > 0$
 - **Common period**: $T_0 \approx \frac{2\pi}{\lambda}$. Family $I_1 > 0$ and $I_2 > 0$

- Abbreviation used

 $M = qA + pB$

 $N = qB + pC$

 $\sigma = q\lambda_1 - p\lambda_2$
Condition for periodic orbit to exist for $\varepsilon \neq 0$:
- Nontrivial characteristic multipliers can’t be 1
- Otherwise solve the bifurcation equations to get periodic orbit
- One equation can be replaced by Hamiltonian
- Use Fredholm alternative theorem to solve equations
- If an action variable is close to 0 switch to Cartesian coordinates

Results:
- **Short period**: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $I_1 > 0$ and $I_2 \approx 0$
- **Long period**: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $I_1 \approx 0$ and $I_2 > 0$
- **Common period**: $T_0 \approx \frac{2\pi}{\lambda}$. Family $I_1 > 0$ and $I_2 > 0$

Abbreviation used:

\[
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
\]
Periodic Orbits Derived from Normal Form

- Condition for periodic orbit to exist for $\varepsilon \neq 0$:
 - Nontrivial characteristic multipliers can’t be 1
 - Otherwise solve the bifurcation equations to get periodic orbit
 - One equation can be replaced by Hamiltonian
 - Use Fredholm alternative theorem to solve equations
 - If an action variable is close to 0 switch to Cartesian coordinates

- Results:
 - **Short period**: $T_1 \approx \frac{2\pi}{p\lambda}$. Family near $l_1 > 0$ and $l_2 \approx 0$
 - **Long period**: $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $l_1 \approx 0$ and $l_2 > 0$
 - **Common period**: $T_0 \approx \frac{2\pi}{\lambda}$. Family $l_1 > 0$ and $l_2 > 0$

- Abbreviation used

\[
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
\]
Condition for periodic orbit to exist for $\varepsilon \neq 0$:

- Nontrivial characteristic multipliers can’t be 1
- Otherwise solve the bifurcation equations to get periodic orbit
- One equation can be replaced by Hamiltonian
- Use Fredholm alternative theorem to solve equations
- If an action variable is close to 0 switch to Cartesian coordinates

Results:

- **Short period:** $T_1 \approx \frac{2\pi}{\rho\lambda}$. Family near $I_1 > 0$ and $I_2 \approx 0$
- **Long period:** $T_2 \approx \frac{2\pi}{q\lambda}$. Family near $I_1 \approx 0$ and $I_2 > 0$
- **Common period:** $T_0 \approx \frac{2\pi}{\lambda}$. Family $I_1 > 0$ and $I_2 > 0$

Abbreviation used

\[
M = qA + pB \\
N = qB + pC \\
\sigma = q\lambda_1 - p\lambda_2
\]
The normal form for the restricted three-body problem for $0 < \mu < \mu_1$, and $\mu \neq \mu_2, \mu_3$ through fourth order terms

$$H = \omega_1 l_1 - \omega_2 l_2 + \frac{1}{2}(A l_1^2 + 2B l_1 l_2 + C l_2^2) + \cdots.$$

$$A = \frac{\omega_2^2 (81 - 696 \omega_1^2 + 124 \omega_1^4)}{72 (1 - 2 \omega_1^2)^2 (1 - 5 \omega_1^2)},$$

$$B = -\frac{\omega_1 \omega_2 (43 + 64 \omega_1^2 \omega_2^2)}{6 (1 - 2 \omega_1^2)(1 - 2 \omega_2^2)(1 - 5 \omega_1^2)(1 - 5 \omega_2^2)},$$

$$C(\omega_1, \omega_2) = A(\omega_2, \omega_1).$$
The normal form for the restricted three-body problem for $0 < \mu < \mu_1$, and $\mu \neq \mu_2, \mu_3$ through fourth order terms

$$H = \omega_1 l_1 - \omega_2 l_2 + \frac{1}{2}(A l_1^2 + 2B l_1 l_2 + C l_2^2) + \cdots.$$

$$A = \frac{\omega_2^2(81 - 696\omega_1^2 + 124\omega_1^4)}{72(1 - 2\omega_1^2)^2(1 - 5\omega_1^2)},$$

$$B = -\frac{\omega_1\omega_2(43 + 64\omega_1^2\omega_2^2)}{6(1 - 2\omega_1^2)(1 - 2\omega_2^2)(1 - 5\omega_1^2)(1 - 5\omega_2^2)},$$

$$C(\omega_1, \omega_2) = A(\omega_2, \omega_1).$$
Nontrivial characteristic multipliers: eigenvalues of

\[
\frac{\partial (x_2(2\pi), y_2(2\pi))}{\partial (x_20, y_20)} = \begin{pmatrix}
\cos(2\pi \nu) & \sin(2\pi \nu) \\
-\sin(2\pi \nu) & \cos(2\pi \nu)
\end{pmatrix} + O(\varepsilon^3)
\]

and they are \(\cos(2\pi \nu) \pm i \sin(2\pi \nu)\) with

\[
\nu = \frac{q}{p} - \frac{\varepsilon^2}{p^2 \lambda} (M J_1 + \sigma) + O(\varepsilon^3)
\]

The eigenvalues are on the unit circle and have to stay there for \(J_1 \geq 0\) since they are not +1 or -1.

Note: If \(J_1 = -\sigma/M > 0\) and orbit is traveled \(q\) times, the characteristic multipliers become +1. This will allow for the bifurcation of another family of periodic orbits.
Short Period Orbits, \(I_1 > 0 \) and \(I_2 \approx 0 \)

- Nontrivial characteristic multipliers: eigenvalues of

\[
\frac{\partial(x_2(2\pi), y_2(2\pi))}{\partial(x_2(2\pi), y_2(2\pi))} = \begin{pmatrix} \cos(2\pi \nu) & \sin(2\pi \nu) \\ -\sin(2\pi \nu) & \cos(2\pi \nu) \end{pmatrix} + O(\varepsilon^3)
\]

- and they are \(\cos(2\pi \nu) \pm i \sin(2\pi \nu) \) with

\[
\nu = \frac{q}{p} - \frac{\varepsilon^2}{p^2 \lambda} (MJ_1 + \sigma) + O(\varepsilon^3)
\]

- The eigenvalues are on the unit circle and have to stay there for \(J_1 \geq 0 \) since they are not +1 or -1.

- Note: If \(J_1 = -\sigma/M > 0 \) and orbit is traveled \(q \) times, the characteristic multipliers become +1. This will allow for the bifurcation of another family of periodic orbits.
Short Period Orbits, $I_1 > 0$ and $I_2 \approx 0$

- Nontrivial characteristic multipliers: eigenvalues of

$$\frac{\partial (x_2(2\pi), y_2(2\pi))}{\partial (x_{20}, y_{20})} = \begin{pmatrix} \cos (2\pi \nu) & \sin (2\pi \nu) \\ -\sin (2\pi \nu) & \cos (2\pi \nu) \end{pmatrix} + O(\varepsilon^3)$$

and they are $\cos(2\pi \nu) \pm i \sin (2\pi \nu)$ with

$$\nu = \frac{q}{p} - \frac{\varepsilon^2}{p^2 \lambda} (MJ_1 + \sigma) + O(\varepsilon^3)$$

- The eigenvalues are on the unit circle and have to stay there for $J_1 \geq 0$ since they are not $+1$ or -1.

- Note: If $J_1 = -\sigma/M > 0$ and orbit is traveled q times, the characteristic multipliers become $+1$. This will allow for the bifurcation of another family of periodic orbits.
Nontrivial characteristic multipliers: eigenvalues of
\[\frac{\partial (x_2(2\pi), y_2(2\pi))}{\partial (x_0, y_0)} = \begin{pmatrix} \cos(2\pi \nu) & \sin(2\pi \nu) \\ -\sin(2\pi \nu) & \cos(2\pi \nu) \end{pmatrix} + O(\varepsilon^3) \]

and they are \(\cos(2\pi \nu) \pm i\sin(2\pi \nu) \) with
\[\nu = \frac{q}{p} - \frac{\varepsilon^2}{p^2 \lambda} (MJ_1 + \sigma) + O(\varepsilon^3) \]

The eigenvalues are on the unit circle and have to stay there for \(J_1 \geq 0 \) since they are not +1 or -1.

Note: If \(J_1 = -\sigma/M > 0 \) and orbit is traveled \(q \) times, the characteristic multipliers become +1. This will allow for the bifurcation of another family of periodic orbits.
Long Period Family $l_2 > 0$ and $l_1 \approx 0$

- Use Φ_2 as new independent variable, and $x_1 = x_1(\Phi_2)$, $y_1 = y_1(\Phi_2)$
- $l_2 = J_2 = \text{const}$
- Nontrivial characteristic multipliers: eigenvalues of

$$\frac{\partial(x_1(2\pi), y_1(2\pi))}{\partial(x_{10}, y_{10})} = \begin{pmatrix} \cos(2\pi \nu) & \sin(2\pi \nu) \\ -\sin(2\pi \nu) & \cos(2\pi \nu) \end{pmatrix} + O(\varepsilon^3)$$

- and are $\cos(2\pi \nu) \pm i \sin(2\pi \nu)$ with

$$\nu = \frac{p}{q} + \frac{\varepsilon^2}{q^2\lambda} (NJ_2 + \sigma) + O(\varepsilon^3)$$

- The eigenvalues may not stay on the unit circle when they are -1 for $q = 2$ and when they are $+1$ for $q = 1$
- For $q = 2$ near $J_2 = -\sigma/N > 0$ the long period family encounters an interval of instability
Long Period Family $l_2 > 0$ and $l_1 \approx 0$

- Use Φ_2 as new independent variable, and $x_1 = x_1(\Phi_2)$, $y_1 = y_1(\Phi_2)$
- $l_2 = J_2 = \text{const}$
- Nontrivial characteristic multipliers: eigenvalues of

$$\frac{\partial (x_1(2\pi), y_1(2\pi))}{\partial (x_{10}, y_{10})} = \begin{pmatrix} \cos (2\pi \nu) & \sin (2\pi \nu) \\ -\sin (2\pi \nu) & \cos (2\pi \nu) \end{pmatrix} + O(\epsilon^3)$$

- and are $\cos(2\pi \nu) \pm i \sin(2\pi \nu)$ with

$$\nu = \frac{p}{q} + \frac{\epsilon^2}{q^2\lambda} (NJ_2 + \sigma) + O(\epsilon^3)$$

- The eigenvalues may not stay on the unit circle when they are -1 for $q = 2$ and when they are $+1$ for $q = 1$
- For $q = 2$ near $J_2 = -\sigma/N > 0$ the long period family encounters an interval of instability
Long Period Family $l_2 > 0$ and $l_1 \approx 0$

- Use Φ_2 as new independent variable, and $x_1 = x_1(\Phi_2)$, $y_1 = y_1(\Phi_2)$
- $l_2 = J_2 = \text{const}$
- Nontrivial characteristic multipliers: eigenvalues of

$$\frac{\partial (x_1(2\pi), y_1(2\pi))}{\partial (x_{10}, y_{10})} = \begin{pmatrix} \cos(2\pi \nu) & \sin(2\pi \nu) \\ -\sin(2\pi \nu) & \cos(2\pi \nu) \end{pmatrix} + O(\varepsilon^3)$$

- and are $\cos(2\pi \nu) \pm i \sin(2\pi \nu)$ with

$$\nu = \frac{p}{q} + \frac{\varepsilon^2}{q^2 \lambda} (NJ_2 + \sigma) + O(\varepsilon^3)$$

- The eigenvalues may not stay on the unit circle when they are -1 for $q = 2$ and when they are $+1$ for $q = 1$
- For $q = 2$ near $J_2 = -\sigma/N > 0$ the long period family encounters an interval of instability
Long Period Family $l_2 > 0$ and $l_1 \approx 0$

- Use Φ_2 as new independent variable, and $x_1 = x_1(\Phi_2)$, $y_1 = y_1(\Phi_2)$
- $l_2 = J_2 = \text{const}$
- Nontrivial characteristic multipliers: eigenvalues of
 \[
 \frac{\partial (x_1(2\pi), y_1(2\pi))}{\partial (x_{10}, y_{10})} = \begin{pmatrix}
 \cos(2\pi \nu) & \sin(2\pi \nu) \\
 -\sin(2\pi \nu) & \cos(2\pi \nu)
 \end{pmatrix} + O(\varepsilon^3)
 \]
 and are $\cos(2\pi \nu) \pm i \sin(2\pi \nu)$ with
 \[
 \nu = \frac{p}{q} + \frac{\varepsilon^2}{q^2 \lambda} (NJ_2 + \sigma) + O(\varepsilon^3)
 \]
- The eigenvalues may not stay on the unit circle when they are -1 for $q = 2$ and when they are $+1$ for $q = 1$
- For $q = 2$ near $J_2 = -\sigma/N > 0$ the long period family encounters an interval of instability
Long Period Family $I_2 > 0$ and $I_1 \approx 0$

- Use Φ_2 as new independent variable, and $x_1 = x_1(\Phi_2)$, $y_1 = y_1(\Phi_2)$
- $I_2 = J_2 = \text{const}$
- Nontrivial characteristic multipliers: eigenvalues of
 \[
 \frac{\partial (x_1(2\pi), y_1(2\pi))}{\partial (x_{10}, y_{10})} = \begin{pmatrix}
 \cos (2\pi \nu) & \sin (2\pi \nu) \\
 -\sin (2\pi \nu) & \cos (2\pi \nu)
 \end{pmatrix} + O(\epsilon^3)
 \]
- and are $\cos(2\pi \nu) \pm i \sin (2\pi \nu)$ with
 \[
 \nu = \frac{p}{q} + \frac{\epsilon^2}{q^2 \lambda} (NJ_2 + \sigma) + O(\epsilon^3)
 \]
- The eigenvalues may not stay on the unit circle when they are -1 for $q = 2$ and when they are $+1$ for $q = 1$
- For $q = 2$ near $J_2 = -\sigma/N > 0$ the long period family encounters an interval of instability
Long Period Family $I_2 > 0$ and $I_1 \approx 0$

- Use Φ_2 as new independent variable, and $x_1 = x_1(\Phi_2)$, $y_1 = y_1(\Phi_2)$
- $I_2 = J_2 = \text{const}$
- Nontrivial characteristic multipliers: eigenvalues of

$$\frac{\partial(x_1(2\pi), y_1(2\pi))}{\partial(x_{10}, y_{10})} = \begin{pmatrix} \cos(2\pi \nu) & \sin(2\pi \nu) \\ -\sin(2\pi \nu) & \cos(2\pi \nu) \end{pmatrix} + \mathcal{O}(\varepsilon^3)$$

- and are $\cos(2\pi \nu) \pm i \sin(2\pi \nu)$ with

$$\nu = \frac{p}{q} + \frac{\varepsilon^2}{q^2 \lambda} (NJ_2 + \sigma) + \mathcal{O}(\varepsilon^3)$$

- The eigenvalues may not stay on the unit circle when they are -1 for $q = 2$ and when they are $+1$ for $q = 1$
- For $q = 2$ near $J_2 = -\sigma/N > 0$ the long period family encounters an interval of instability
The exceptional resonance case when $q = 1$

- The Jacobian is zero at $\varepsilon = 0$ when $q = 1$
- Expand bifurcation equations in ε and divide by ε^2
- If the modified Jacobian
 \[
 \frac{\partial (\Gamma_2, \Gamma_3)}{\partial (x_{10}, y_{10})} = (NJ_2 + \sigma)^2 \neq 0
 \]
 then the bifurcation equations can be solved also when $q = 1$
- If $J_2 = -\sigma/N > 0$ then at this value for J_2 the bifurcation equations can not be solved
- The family of long period orbits breaks up and connects with the family of the common period
The exceptional resonance case when $q = 1$

- The Jacobian is zero at $\varepsilon = 0$ when $q = 1$
- Expand bifurcation equations in ε and divide by ε^2
- If the modified Jacobian
 \[
 \frac{\partial (\Gamma_2, \Gamma_3)}{\partial (x_{10}, y_{10})} = (NJ_2 + \sigma)^2 \neq 0
 \]
 then the bifurcation equations can be solved also when $q = 1$
- If $J_2 = -\sigma/N > 0$ then at this value for J_2 the bifurcation equations
 can not be solved
- The family of long period orbits breaks up and connects with the family of the common period
The exceptional resonance case when $q = 1$

- The Jacobian is zero at $\varepsilon = 0$ when $q = 1$
- Expand bifurcation equations in ε and divide by ε^2
- If the modified Jacobian
 \[
 \frac{\partial (\Gamma_2, \Gamma_3)}{\partial (x_{10}, y_{10})} = (NJ_2 + \sigma)^2 \neq 0
 \]
 then the bifurcation equations can be solved also when $q = 1$
- If $J_2 = -\sigma/N > 0$ then at this value for J_2 the bifurcation equations can not be solved
- The family of long period orbits breaks up and connects with the family of the common period
The exceptional resonance case when \(q = 1 \)

- The Jacobian is zero at \(\varepsilon = 0 \) when \(q = 1 \)
- Expand bifurcation equations in \(\varepsilon \) and divide by \(\varepsilon^2 \)
- If the modified Jacobian
 \[
 \frac{\partial (\Gamma_2, \Gamma_3)}{\partial (x_{10}, y_{10})} = (NJ_2 + \sigma)^2 \neq 0
 \]
 then the bifurcation equations can be solved also when \(q = 1 \)
- If \(J_2 = -\sigma/N > 0 \) then at this value for \(J_2 \) the bifurcation equations cannot be solved
- The family of long period orbits breaks up and connects with the family of the common period
The exceptional resonance case when $q = 1$

- The Jacobian is zero at $\varepsilon = 0$ when $q = 1$
- Expand bifurcation equations in ε and divide by ε^2
- If the modified Jacobian
 \[
 \frac{\partial (\Gamma_2, \Gamma_3)}{\partial (x_{10}, y_{10})} = (NJ_2 + \sigma)^2 \neq 0
 \]
 then the bifurcation equations can be solved also when $q = 1$
- If $J_2 = -\sigma/N > 0$ then at this value for J_2 the bifurcation equations can not be solved
- The family of long period orbits breaks up and connects with the family of the common period
Bifurcation equations for orbits with period
\[T = \frac{2\pi}{\lambda} + \epsilon \beta \] and \(l_1 \neq 0 \) and \(l_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(I_1(0) = J_1, I_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[\Gamma_2 = J_1^{q/2} J_2^{p/2} G \sin (p \psi_2 + \alpha) + O(\epsilon^2) = 0 \quad (1) \]
\[\Gamma_3 = MJ_1 + NJ_2 + \sigma + O(\epsilon) = 0 \quad (2) \]

- If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions
- Periodic orbits are possible on this torus when 1 is satisfied
\[\sin (p \psi_2 + \alpha) + \cdots = 0 \]
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Bifurcation equations for orbits with period
\[T = 2\pi/\lambda + \varepsilon \beta \] and \(I_1 \neq 0 \) and \(I_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(I_1(0) = J_1, I_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[\Gamma_2 = J_1^{q/2} J_2^{p/2} G \sin (p\psi_2 + \alpha) + O(\varepsilon^2) = 0 \] (1)

\[\Gamma_3 = MJ_1 + NJ_2 + \sigma + O(\varepsilon) = 0 \] (2)

- If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions
- Periodic orbits are possible on this torus when 1 is satisfied
 \[\sin (p\psi_2 + \alpha) + \cdots = 0 \]
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Bifurcation equations for orbits with period
\[T = \frac{2\pi}{\lambda} + \varepsilon \beta \] and \(l_1 \neq 0 \) and \(l_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(l_1(0) = J_1, l_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[\Gamma_2 = J_1^{\frac{q}{2}} J_2^{\frac{p}{2}} G \sin (p\psi_2 + \alpha) + O(\varepsilon^2) = 0 \]
\[\Gamma_3 = MJ_1 + NJ_2 + \sigma + O(\varepsilon) = 0 \]

- If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions
- Periodic orbits are possible on this torus when 1 is satisfied \(\sin (p\psi_2 + \alpha) + \cdots = 0 \)
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Bifurcation equations for orbits with period
\[T = 2\pi/\lambda + \varepsilon \beta \] and \(I_1 \neq 0 \) and \(I_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(I_1(0) = J_1, \; I_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[\Gamma_2 = J_1^{q/2} J_2^{p/2} G \sin(p\psi_2 + \alpha) + O(\varepsilon^2) = 0 \]
\[\Gamma_3 = MJ_1 + NJ_2 + \sigma + O(\varepsilon) = 0 \]

If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions

- Periodic orbits are possible on this torus when 1 is satisfied
\[\sin(p\psi_2 + \alpha) + \cdots = 0 \]
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Bifurcation equations for orbits with period
\[T = \frac{2\pi}{\lambda} + \varepsilon \beta \] and \(l_1 \neq 0 \) and \(l_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(I_1(0) = J_1, I_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[\Gamma_2 = J_1^{q/2} J_2^{p/2} G \sin (p \psi_2 + \alpha) + O(\varepsilon^2) = 0 \] (1)
\[\Gamma_3 = MJ_1 + NJ_2 + \sigma + O(\varepsilon) = 0 \] (2)

- If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions
- Periodic orbits are possible on this torus when 1 is satisfied
\[\sin (p \psi_2 + \alpha) + \cdots = 0 \]
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Bifurcation equations for orbits with period
\[T = \frac{2\pi}{\lambda} + \varepsilon \beta \] and \(l_1 \neq 0 \) and \(l_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(I_1(0) = J_1 \), \(I_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[
\Gamma_2 = J_1^{q/2} J_2^{p/2} G \sin(p\psi_2 + \alpha) + O(\varepsilon^2) = 0 \quad (1)
\]
\[
\Gamma_3 = MJ_1 + NJ_2 + \sigma + O(\varepsilon) = 0 \quad (2)
\]

- If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions
- Periodic orbits are possible on this torus when 1 is satisfied
 \[\sin(p\psi_2 + \alpha) + \cdots = 0 \]
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Bifurcation equations for orbits with period
\[T = \frac{2\pi}{\lambda} + \varepsilon \beta \] and \(l_1 \neq 0 \) and \(l_2 \neq 0 \)

- Use differential equations in action–angle variables
- The initial conditions are \(l_1(0) = J_1, \ l_2(0) = J_2 \) and \(\phi_2(0) = \psi_2 \)

\[
\begin{align*}
\Gamma_2 &= J_1^{q/2} J_2^{p/2} G \sin (p \psi_2 + \alpha) + \mathcal{O}(\varepsilon^2) = 0 \quad (1) \\
\Gamma_3 &= MJ_1 + NJ_2 + \sigma + \mathcal{O}(\varepsilon) = 0 \quad (2)
\end{align*}
\]

- If (2) allows for solutions with \(J_1 > 0 \) and \(J_2 > 0 \) we have a torus of periodic solutions
- Periodic orbits are possible on this torus when 1 is satisfied
 \[\sin (p \psi_2 + \alpha) + \cdots = 0 \]
- Two distinct solutions are possible \(\psi_2 = -\alpha/p + \cdots \) and \(\psi_2 = (\pi - \alpha)/p + \cdots \), one is stable the other unstable
- All other solutions of (1) give nothing new
Equation $MJ_1 + NJ_2 + \sigma = 0$ for L_4

- **Detuning:**

 $$\sigma = \omega_2 \lambda_1 - \omega_1 \lambda_2 = \omega_2 \frac{d\omega_1}{d\mu} - \omega_1 \frac{d\omega_2}{d\mu}$$

- For restricted three body problem

 $$\sigma = \frac{-3\sqrt{3}(1 - 2\mu)}{4\sqrt{\mu(1 - \mu)(1 - 27\mu(1 - \mu))}} < 0$$

- Since $\sigma < 0$ it corresponds to $\mu > \mu_{p/q}$

- To see what happens for $\mu < \mu_{p/q}$ change sign of σ
Equation $MJ_1 + NJ_2 + \sigma = 0$ for L_4

- **Detuning:**

 \[
 \sigma = \omega_2 \lambda_1 - \omega_1 \lambda_2 = \omega_2 \frac{d\omega_1}{d\mu} - \omega_1 \frac{d\omega_2}{d\mu}
 \]

- For restricted three body problem

 \[
 \sigma = \frac{-3\sqrt{3}(1 - 2\mu)}{4\sqrt{\mu(1 - \mu)(1 - 27\mu(1 - \mu))}} < 0
 \]

- Since $\sigma < 0$ it corresponds to $\mu > \mu_{p/q}$
- To see what happens for $\mu < \mu_{p/q}$ change sign of σ
Equation $MJ_1 + NJ_2 + \sigma = 0$ for L_4

- Detuning:

 $$\sigma = \omega_2 \lambda_1 - \omega_1 \lambda_2 = \omega_2 \frac{d\omega_1}{d\mu} - \omega_1 \frac{d\omega_2}{d\mu}$$

- For restricted three body problem

 $$\sigma = \frac{-3\sqrt{3}(1 - 2\mu)}{4\sqrt{\mu(1 - \mu)(1 - 27\mu(1 - \mu))}} < 0$$

- Since $\sigma < 0$ it corresponds to $\mu > \mu_{p/q}$

- To see what happens for $\mu < \mu_{p/q}$ change sign of σ
Equation $MJ_1 + NJ_2 + \sigma = 0$ for L_4

- **Detuning:**

 $$\sigma = \omega_2 \lambda_1 - \omega_1 \lambda_2 = \omega_2 \frac{d\omega_1}{d\mu} - \omega_1 \frac{d\omega_2}{d\mu}$$

- For restricted three body problem

 $$\sigma = \frac{-3\sqrt{3}(1 - 2\mu)}{4\sqrt{\mu(1 - \mu)(1 - 27\mu(1 - \mu))}} < 0$$

- Since $\sigma < 0$ it corresponds to $\mu > \mu_{p/q}$

- To see what happens for $\mu < \mu_{p/q}$ change sign of σ
Values for $MJ_1 + NJ_2 + \sigma = 0$ near \mathcal{L}_4

\[M = \frac{\omega_2(324 - 4029\omega_1^2 + 6397\omega_1^4 - 3828\omega_1^6 + 620\omega_1^8)}{72(1 - 2\omega_1^2)^2(4 - 25\omega_1^2 + 25\omega_1^4)} \]

\[N = \frac{\omega_1(-516 + 239\omega_1^2 - 1367\omega_1^4 + 1348\omega_1^6 + 620\omega_1^8)}{72(1 - 2\omega_1^2)^2(4 - 25\omega_1^2 + 25\omega_1^4)} \]

$N = 0$ for $\mu = \mu^* = 0.01272398874654163$
Values for $MJ_1 + NJ_2 + \sigma = 0$ near \mathcal{L}_4

\[M = \frac{\omega_2(324 - 4029\omega_1^2 + 6397\omega_1^4 - 3828\omega_1^6 + 620\omega_1^8)}{72(1 - 2\omega_1^2)^2(4 - 25\omega_1^2 + 25\omega_1^4)} \]

\[N = \frac{\omega_1(-516 + 239\omega_1^2 - 1367\omega_1^4 + 1348\omega_1^6 + 620\omega_1^8)}{72(1 - 2\omega_1^2)^2(4 - 25\omega_1^2 + 25\omega_1^4)} \]

$N = 0$ for $\mu = \mu^* = 0.01272398874654163$
Values for $MJ_1 + NJ_2 + \sigma = 0$ near \mathcal{L}_4

\[M = \frac{\omega_2(324 - 4029\omega_1^2 + 6397\omega_1^4 - 3828\omega_1^6 + 620\omega_1^8)}{72(1 - 2\omega_1^2)^2(4 - 25\omega_1^2 + 25\omega_1^4)} \]

\[N = \frac{\omega_1(-516 + 239\omega_1^2 - 1367\omega_1^4 + 1348\omega_1^6 + 620\omega_1^8)}{72(1 - 2\omega_1^2)^2(4 - 25\omega_1^2 + 25\omega_1^4)} \]

$N = 0$ for $\mu = \mu^* = 0.01272398874654163$
“Open case” for $0 < \mu < \mu^*$

- \(\mu < \mu_{p/q} \)
- \(\mu = \mu_{p/q} \)
- \(\mu > \mu_{p/q} \)
“Bridge” for $\mu^* < \mu < \mu_2 \quad \mu \neq \mu_3$

$\mu < \mu_{p/q}$

$\mu = \mu_{p/q}$

$\mu > \mu_{p/q}$
“Bridge” for $\mu_2 < \mu < \mu_1$

$\mu < \mu_{p/q}$

$\mu = \mu_{p/q}$

$\mu > \mu_{p/q}$
What happens when $J_1 \rightarrow 0$ or $J_2 \rightarrow 0$ (case $\mu < \mu^*$)

Theorem (Case $p > q > 2$)

- For $\mu < \mu_{p/q}$ bifurcation of a stable and unstable family from the short period family (repeated p times)
- For $\mu = \mu_{p/q}$ four families of periodic orbits emanate from L_4: Short, long and two with the common period
- For $\mu > \mu_{p/q}$ bifurcation of a stable and unstable family from the long period family (repeated q times)

Result follows from normal form through fourth order terms
What happens when $J_1 \to 0$ or $J_2 \to 0$ (continued)

Theorem (Case $p > q = 2$)

- For $\mu < \mu_{p/2}$ bifurcation of a stable and unstable family from the short period family (repeated p times)
- For $\mu = \mu_{p/2}$ four families of periodic orbits emanate from L_4: Short, long and two with the common period
- For $\mu > \mu_{p/2}$ long period family has interval of instability and the two families connect to the end of the interval with orbit traveled twice

To show result need to have resonance terms, that is $G \neq 0$
What happens when $J_1 \to 0$ or $J_2 \to 0$ (continued)

Theorem (Case $p > 3$ and $q = 1$)

- For $\mu < \mu_p$ bifurcation of a stable and unstable family from the short period family (repeated p times)
- For $\mu = \mu_p$ four families of periodic orbits emanate from L_4: Short, and three long period families
- For $\mu > \mu_p$ long period family breaks up and connects with the families of the common period

To prove result need to have resonance terms with $G \neq 0$
Schematic presentation of results for μ in interval $[\mu_{13}, \mu_{12}]$

Left panel from terms through order 4
Right panel from normal form through order 14
Long period orbits for $\mu_{SJ} : B(L, 13S)$
Short period bridge $B(13S, 14S)$
Period versus Energy for long period chain $L_p, B(13S, 14S), B(1S, 15S), B(15S, 16S), B(16S, 17S)$
Fast and slow variables

- They consider Hamiltonian $H(x, y, u, v; \varepsilon)$ with symplectic form $d\Omega = dx \wedge dy + \varepsilon du \wedge dv$, that is

$$
\begin{align*}
\varepsilon \frac{dx}{dt} &= \frac{\partial H}{\partial y} \\
\frac{dy}{dt} &= -\frac{\partial H}{\partial x} \\
\frac{du}{dt} &= \frac{\partial H}{\partial v} \\
\frac{dv}{dt} &= -\frac{\partial H}{\partial u}
\end{align*}
$$

- x and y are the fast variables, u and v are the slow variables
- The harmonic oscillators are in $1 : n$ resonance as $\varepsilon \to 0$
- They prove the existence of invariant tori near the equilibrium point
- They also show via numerical computations that the long period family has a series of gaps
- Here ω_1 would be the fast frequency and ω_2 the slow frequency
Fast and slow variables

- They consider Hamiltonian $H(x, y, u, v; \varepsilon)$ with symplectic form $d\Omega = dx \wedge dy + \varepsilon du \wedge dv$, that is

$$
\begin{align*}
\frac{dx}{dt} &= \frac{\partial H}{\partial y} & \frac{du}{dt} &= \frac{\partial H}{\partial v} \\
\frac{dy}{dt} &= \frac{\partial H}{\partial x} & \frac{dv}{dt} &= -\frac{\partial H}{\partial u}
\end{align*}
$$

- x and y are the fast variables, u and v are the slow variables
- The harmonic oscillators are in $1 : n$ resonance as $\varepsilon \to 0$
- They prove the existence of invariant tori near the equilibrium point
- They also show via numerical computations that the long period family has a series of gaps
- Here ω_1 would be the fast frequency and ω_2 the slow frequency
Fast and slow variables

- They consider Hamiltonian $H(x, y, u, v; \varepsilon)$ with symplectic form $d\Omega = dx \wedge dy + \varepsilon du \wedge dv$, that is

$$
\begin{align*}
\frac{dx}{dt} & = \frac{\partial H}{\partial y} \\
\frac{du}{dt} & = \frac{\partial H}{\partial v} \\
\frac{dy}{dt} & = -\frac{\partial H}{\partial x} \\
\frac{dv}{dt} & = -\frac{\partial H}{\partial u}
\end{align*}
$$

- x and y are the fast variables, u and v are the slow variables

- The harmonic oscillators are in $1 : n$ resonance as $\varepsilon \to 0$

- They prove the existence of invariant tori near the equilibrium point

- They also show via numerical computations that the long period family has a series of gaps

- Here ω_1 would be the fast frequency and ω_2 the slow frequency
Fast and slow variables

- They consider Hamiltonian \(H(x, y, u, v; \varepsilon) \) with symplectic form \(d\Omega = dx \wedge dy + \varepsilon du \wedge dv \), that is
 \[
 \begin{align*}
 \varepsilon \frac{dx}{dt} &= \frac{\partial H}{\partial y} \\
 \frac{dy}{dt} &= -\frac{\partial H}{\partial x} \\
 \frac{du}{dt} &= \frac{\partial H}{\partial v} \\
 \frac{dv}{dt} &= -\frac{\partial H}{\partial u}
 \end{align*}
 \]
- \(x \) and \(y \) are the fast variables, \(u \) and \(v \) are the slow variables
- The harmonic oscillators are in \(1 : n \) resonance as \(\varepsilon \to 0 \)
- They prove the existence of invariant tori near the equilibrium point
- They also show via numerical computations that the long period family has a series of gaps
- Here \(\omega_1 \) would be the fast frequency and \(\omega_2 \) the slow frequency
Fast and slow variables

- They consider Hamiltonian $H(x, y, u, v; \varepsilon)$ with symplectic form $d\Omega = dx \wedge dy + \varepsilon du \wedge dv$, that is
 \[
 \begin{align*}
 \frac{dx}{dt} &= \frac{\partial H}{\partial y} \\
 \frac{dy}{dt} &= -\frac{\partial H}{\partial x} \\
 \frac{du}{dt} &= \frac{\partial H}{\partial v} \\
 \frac{dv}{dt} &= -\frac{\partial H}{\partial u}
 \end{align*}
 \]

- x and y are the fast variables, u and v are the slow variables
- The harmonic oscillators are in $1 : n$ resonance as $\varepsilon \to 0$
- They prove the existence of invariant tori near the equilibrium point
- They also show via numerical computations that the long period family has a series of gaps
- Here ω_1 would be the fast frequency and ω_2 the slow frequency
Fast and slow variables

- They consider Hamiltonian $H(x, y, u, v; \varepsilon)$ with symplectic form $d\Omega = dx \wedge dy + \varepsilon du \wedge dv$, that is

 $\varepsilon \frac{dx}{dt} = \frac{\partial H}{\partial y} \quad \frac{du}{dt} = \frac{\partial H}{\partial v}$

 $\varepsilon \frac{dy}{dt} = -\frac{\partial H}{\partial x} \quad \frac{dv}{dt} = -\frac{\partial H}{\partial u}$

- x and y are the fast variables, u and v are the slow variables
- The harmonic oscillators are in $1 : n$ resonance as $\varepsilon \to 0$
- They prove the existence of invariant tori near the equilibrium point
- They also show via numerical computations that the long period family has a series of gaps

Here ω_1 would be the fast frequency and ω_2 the slow frequency
Fast and slow variables

- They consider Hamiltonian $H(x, y, u, v; \varepsilon)$ with symplectic form $d\Omega = dx \wedge dy + \varepsilon du \wedge dv$, that is:

 $\varepsilon \frac{dx}{dt} = \frac{\partial H}{\partial y}$ \hspace{1cm} $\frac{du}{dt} = \frac{\partial H}{\partial v}$
 $\varepsilon \frac{dy}{dt} = -\frac{\partial H}{\partial x}$ \hspace{1cm} $\frac{dv}{dt} = -\frac{\partial H}{\partial u}$

- x and y are the fast variables, u and v are the slow variables
- The harmonic oscillators are in 1 : n resonance as $\varepsilon \rightarrow 0$
- They prove the existence of invariant tori near the equilibrium point
- They also show via numerical computations that the long period family has a series of gaps
- Here ω_1 would be the fast frequency and ω_2 the slow frequency
The paper is not applicable when $\mu \to 0$

Need to consider versal normal form and not diagonal form as in the paper

$$H = \frac{\omega_1}{2} (x_1^2 + y_1^2) - \frac{1}{2} (x_2^2 + \omega_2^2 y_2^2)$$

and

$$\dot{z} = \begin{bmatrix} 0 & 0 & \omega_1 & 0 \\ 0 & 0 & 0 & -\omega_2^2 \\ -\omega_1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} z$$
The paper is not applicable when $\mu \rightarrow 0$

Need to consider versal normal form and not diagonal form as in the paper

$$H = \frac{\omega_1}{2} (x_1^2 + y_1^2) - \frac{1}{2} (x_2^2 + \omega_2^2 y_2^2)$$

and

$$\dot{z} = \begin{bmatrix} 0 & 0 & \omega_1 & 0 \\ 0 & 0 & 0 & -\omega_2^2 \\ -\omega_1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} z$$
Versal Normal Form for μ near 0

- The paper is not applicable when $\mu \to 0$
- Need to consider versal normal form and not diagonal form as in the paper

\[
H = \frac{\omega_1}{2}(x_1^2 + y_1^2) - \frac{1}{2}(x_2^2 + \omega_2^2y_2^2)
\]

and

\[
\dot{z} = \begin{bmatrix}
0 & 0 & \omega_1 & 0 \\
0 & 0 & 0 & -\omega_2^2 \\
-\omega_1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix} z
\]
Symplectic linear transformation with

\[
R = \begin{bmatrix}
\gamma & 1/4 + \omega_2^2 & 8\omega_1 & -\gamma/4 \\
-7 + 4\omega_2^2 & -\gamma/4 & 0 & 3/4 - \omega_2^2 \\
-1 + 4\omega_2^2 & 0 & \gamma\omega_1 & (-3 + 3\omega_2^2 - 4\omega_4^2)/4 \\
\gamma & 1 & \omega_1 + 4\omega_1\omega_2^2 & \gamma(-1 + \omega_2^2)/4 \\
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
\frac{1}{2\sqrt{\omega_1(1-2\omega_2^2)(7-4\omega_2^2)}} & 0 & 0 & 0 \\
0 & \frac{2}{\sqrt{(1-2\omega_2^2)(3-3\omega_2^2+4\omega_4^2)}} & 0 & 0 \\
0 & 0 & \frac{1}{2\sqrt{\omega_1(1-2\omega_2^2)(7-4\omega_2^2)}} & 0 \\
0 & 0 & 0 & \frac{2}{\sqrt{(1-2\omega_2^2)(3-3\omega_2^2+4\omega_4^2)}} \\
\end{bmatrix}
\]
Transformation is regular for $\mu = 0$

- Easy to check, set $\omega_2 = 0$
- ω_2 is a natural parameter for the problem
- Replacement rules

\[
\begin{align*}
\omega_1^2 & \rightarrow 1 - \omega_2^2 \\
\gamma^2 & \rightarrow 27 - 16\omega_2^2 + 16\omega_4^2
\end{align*}
\]
\[H = H_0^0(x_1, x_2, y_1, y_2) + H_1^0(x_1, x_2, y_1, y_2) + \frac{1}{2!} H_2^0(x_1, x_2, y_1, y_2) + \cdots \]

with

\[H_0^0 = \frac{\omega_1}{2}(x_1^2 + y_1^2) - \frac{1}{2}(x_2^2 + \omega_2 y_2^2) \]

Normalization is carried out in real variables, to avoid any issues with reality conditions.
Invariant Subspaces of Lie Transform

For

\[W = x_1^{\alpha_1} x_2^{\alpha_2} y_1^{\beta_1} y_2^{\beta_2} \]

we have

\[L_W H_0^0 = \beta_1 \omega_1 x_1^{\alpha_1+1} x_2^{\alpha_2} y_1^{\beta_1-1} y_2^{\beta_2} - \alpha_1 \omega_1 x_1^{\alpha_1-1} x_2^{\alpha_2} y_1^{\beta_1+1} y_2^{\beta_2} \\
- \beta_2 x_1^{\alpha_1} x_2^{\alpha_2+1} y_1^{\beta_1} y_2^{\beta_2-1} + \alpha_2 \omega_2^2 x_1^{\alpha_1} x_2^{\alpha_2-1} y_1^{\beta_1} y_2^{\beta_2+1} \]

Invariant subspace for terms of degree

\[\alpha_1 + \alpha_2 + \beta_1 + \beta_2 = n \]

is formed by \(\alpha_1 + \beta_1 = n_1 \) and \(\alpha_2 + \beta_2 = n - n_1 \)
Action of $L_W H_0^0$ in matrix form
For invariant sub-spaces $(y_1^3, y_1^2 x_1, y_1 x_1^2, x_1^3)$

$$
\begin{pmatrix}
0 & \omega_1 & 0 & 0 \\
-3\omega_1 & 0 & 2\omega_1 & 0 \\
0 & -2\omega_1 & 0 & 3\omega_1 \\
0 & 0 & -\omega_1 & 0
\end{pmatrix}
$$

Matrix is nonsingular and thus all third order terms in this sub-space can be eliminated
For invariant sub-spaces \((y_1^4, y_1^3x_1, y_1^2x_1^2, y_1x_1^3, x_1^4)\)

\[
\begin{pmatrix}
0 & \omega_1 & 0 & 0 & 0 \\
-4\omega_1 & 0 & 2\omega_1 & 0 & 0 \\
0 & -3\omega_1 & 0 & 3\omega_1 & 0 \\
0 & 0 & -2\omega_1 & 0 & 4\omega_1 \\
0 & 0 & 0 & -\omega_1 & 0
\end{pmatrix}
\]

Matrix is singular and thus not all fourth order terms in this sub-space can be eliminated. Common to choose terms in kernel of form
\((x_1^2 + y_1^2)^2\), that is, terms make up action variable

\[
l_1 = \frac{1}{2}(x_1^2 + y_1^2)
\]
Action of $L W H^0_0$ in matrix form

For invariant sub-spaces $(y^3_2, y^2_2 x_2, y_2 x^2_2, x^3_2)$

$$
\begin{pmatrix}
0 & -1 & 0 & 0 \\
3\omega^2_2 & 0 & -2 & 0 \\
0 & 2\omega^2_2 & 0 & -3 \\
0 & 0 & \omega^2_2 & 0
\end{pmatrix}
$$

- Matrix is singular when $\omega_2 = 0$
- Can not eliminate all third order terms in this sub-space
- Will keep term with y^3_2
- Same will happen at fourth order terms
- Will keep terms with y^4_2
Full versal normal form at \mathcal{L}_4

\[\tilde{H} = \omega_1 l_1 - \frac{1}{2} (x_2^2 + \omega_2^2 y_2^2) \]

\[+ \omega_2^2 (a_1 l_1 y_2 + a_2 y_2^3) \]

\[+ b_1 l_1^2 + b_2 l_1 y_2^2 + b_3 y_2^4 \]

\[+ c_1 l_1^2 y_2 + c_2 l_1 y_2^3 + c_3 y_2^5 \]

\[+ \cdots \]

\[= \omega_1 l_1 - \frac{1}{2} (x_2^2 + \omega_2^2 y_2^2) + F(l_1, y_2) \]

All coefficients depend on ω_2 and are continuous at $\omega_2 = 0$
\[\tilde{H} = \omega_1 l_1 - \frac{1}{2}(x_2^2 + \omega_2^2 y_2^2) + F(l_1, y_2) \]

\[\begin{align*}
\dot{l}_1 & = 0 \\
\dot{\phi}_1 & = -\omega_1 - \frac{\partial F}{\partial l_1} \\
\dot{x}_2 & = -\omega_2^2 y_2 + \frac{\partial F}{\partial y_2} \\
\dot{y}_2 & = x_2
\end{align*} \]
Since \(\frac{\partial F}{\partial y_2} \neq 0 \) for \(x_2 = y_2 = 0 \) short period family no longer at \(x_2 = y_2 = 0 \) but nearby

Also period will not be exactly \(2\pi/\omega_1 \).

The equation

\[
\ddot{y}_2 = -\omega_2^2 y_2 + \frac{\partial F}{\partial y_2}
\]

has a \(2\pi/\omega_1 \) periodic (that is constant) solution if

\[
y_2 = \frac{1}{\omega_2^2} \frac{\partial F}{\partial y_2}
\]

and with it \(x_2 = 0 \)
Since $\frac{\partial F}{\partial y_2} \neq 0$ for $x_2 = y_2 = 0$ short period family no longer at $x_2 = y_2 = 0$ but nearby.

Also period will not be exactly $2\pi/\omega_1$.

The equation

$$\ddot{y}_2 = -\omega_2^2 y_2 + \frac{\partial F}{\partial y_2}$$

has a $2\pi/\omega_1$ periodic (that is constant) solution if

$$y_2 = \frac{1}{\omega_2^2} \frac{\partial F}{\partial y_2}$$

and with it $x_2 = 0$.
Since $\frac{\partial F}{\partial y_2} \neq 0$ for $x_2 = y_2 = 0$ short period family no longer at $x_2 = y_2 = 0$ but nearby.

Also period will not be exactly $2\pi/\omega_1$.

The equation

$$\ddot{y}_2 = -\omega_2^2 y_2 + \frac{\partial F}{\partial y_2}$$

has a $2\pi/\omega_1$ periodic (that is constant) solution if

$$y_2 = \frac{1}{\omega_2^2} \frac{\partial F}{\partial y_2}$$

and with it $x_2 = 0$
Set

\[y_2 = 0 + \varepsilon \eta_1 + \varepsilon^2 \eta_2 + \cdots \]

we find the constant solution

\[y_2 = \varepsilon a_1 l_1 + \varepsilon^3 (3a_1^2 + 2a_1 b_2 + c_1) l_1^2 + \cdots \]

and

\[\dot{\phi}_1 = \omega_1 + \varepsilon (a_1^2 + b_1) \omega_2^2 l_1 + \varepsilon^3 3(a_1^3 a_2 + a_1^2 b_2 + a_1 c_1 + d_1) \omega_2^2 l_1^2 + \cdots \]
Remarks

- Lie Transformation has been carried out to a much higher order
- Choice of ω_2 as the basic parameter makes this possible
- For restricted three body problem at L_4 rational expressions in ω_2 are generated.
- At each step of the normalization new singularities are created, they are the same as appear when normalizing $H = \omega_1 I_1 - \omega_2 I_2$
Remarks

- Lie Transformation has been carried out to a much higher order
- Choice of ω_2 as the basic parameter makes this possible
- For restricted three body problem at L_4 rational expressions in ω_2 are generated.
- At each step of the normalization new singularities are created, they are the same as appear when normalizing $H = \omega_1 I_1 - \omega_2 I_2$
Remarks

- Lie Transformation has been carried out to a much higher order
- Choice of ω_2 as the basic parameter makes this possible
- For restricted three body problem at L_4 rational expressions in ω_2 are generated.
- At each step of the normalization new singularities are created, they are the same as appear when normalizing $H = \omega_1 l_1 - \omega_2 l_2$
Remarks

- Lie Transformation has been carried out to a much higher order.
- Choice of ω_2 as the basic parameter makes this possible.
- For restricted three body problem at L_4 rational expressions in ω_2 are generated.
- At each step of the normalization new singularities are created, they are the same as appear when normalizing $H = \omega_1 l_1 - \omega_2 l_2$.

D. Schmidt (University of Cincinnati)
November 2012
Periodic Orbits Near L_4
58 / 68
\[\sqrt{1 - \omega_2^2 + \omega_2^2} \times \]
\[\frac{I_1(-491 + 448\omega_2^2 + 124\omega_4^2)}{72(1 - 2\omega_2^2)^2(-4 + 5\omega_2^2)} \]
\[- \frac{l_1^2p_2(\omega_2)}{20736\sqrt{1 - \omega_2^2(-1 + 2\omega_2^2)^5(-4 + 5\omega_2^2)^3(-9 + 10\omega_2^2)}} \]
\[- \frac{l_1^3p_3(\omega_2)}{13436928(9 - 10\omega_2^2)^2(1 - 2\omega_2^2)^8(-4 + 5\omega_2^2)^5(16 - 33\omega_2^2 + 17\omega_4^2)} \]
\[+ \cdots \]

\[p_2(\omega_2) = (-18522432 - 221117724\omega_2^2 + 1834402891\omega_2^4 - 5330237408\omega_2^6 + 8326473644\omega_2^8 \\
- 7970990576\omega_2^{10} + 4915656752\omega_2^{12} - 1885370432\omega_2^{14} + 349789120\omega_2^{16}) \]
Frequency of short period orbits for $\omega_2 = 0.01$
Arnold’s Stability Theorem for a Hamiltonian with two degrees of freedom

- Arnold’s theorem addresses the case when exponents are pure imaginary, and the Hamiltonian is not positive definite.
- Assume the Hamiltonian has been normalized, that is in symplectic coordinates x_1, x_2, y_1, y_2 of the form

$$H = H_2 + H_4 + \cdots + H_{2N} + H^\dagger,$$
Arnold’s Stability Theorem for a Hamiltonian with two degrees of freedom

- Arnold’s theorem addresses the case when exponents are pure imaginary, and the Hamiltonian is not positive definite.
- Assume the Hamiltonian has been normalized, that is in symplectic coordinates x_1, x_2, y_1, y_2 of the form

\[H = H_2 + H_4 + \cdots + H_{2N} + H^\dagger, \]
Arnold’s Stability Theorem

- \(H = H_2 + H_4 + \cdots + H_{2N} + H^\dagger, \)
- \(H_{2k}, \ 1 \leq k \leq N, \) is a homogeneous polynomial of degree \(k \) in \(l_1, l_2 \)
- Series expansion of \(H^\dagger \) starts with terms of degree \(2N + 1; \)
- \(H_2 = \omega_1 l_1 - \omega_2 l_2, \) \(\omega_i \) nonzero constants;

Theorem

The origin is stable provided that for some \(k, \ 0 \leq k \leq N, \)
\(D_{2k} = H_{2k}(\omega_2, \omega_1) \neq 0 \) or, equivalently, provided \(H_2 \) does not divide \(H_{2k}. \) In particular, the equilibrium is stable if

\[
D_4 = \frac{1}{2} \{ A\omega_2^2 + 2B\omega_1\omega_2 + C\omega_1^2 \} \neq 0.
\]

Moreover, arbitrarily close to the origin in \(\mathbb{R}^4, \) there are invariant tori and the flow on these invariant tori is the linear flow with irrational slope.
Stability of L_4 for $0 < \mu < \mu_1$, $\mu \neq \mu_2$ and $\mu \neq \mu_3$

- From the values of A, B and C given earlier, compute

 $$D_4 = -\frac{36 - 541\omega_1^2\omega_2^2 + 644\omega_1^4\omega_2^4}{8(1 - 4\omega_1^2\omega_2^2)(4 - 25\omega_1^2\omega_2^2)},$$

- With $\omega_1^2\omega_2^2 = \frac{27}{4}\mu(1 - \mu)$ solve $D_4 = 0$ and find four real roots

 $$\mu = \frac{1}{2} \pm \frac{1}{6}\sqrt{(3265 \pm 2\sqrt{199945})/483}$$

- $\mu = 0.0109137$, $\mu = 0.130756$, $\mu = 0.869244$, $\mu = 0.989086$

- The first value $\mu_d = \frac{1}{2} - \frac{1}{6}\sqrt{(3265 - 2\sqrt{199945})/483}$ is in the interval $(0, \mu_1)$
The special case μ_d

- need to carry out normalization to terms of order six
- $D_6 = 4! H_0^4(\omega_2, \omega_1) = P/Q$

\[
P = -\frac{3105}{4} + \frac{1338449}{48}\sigma - \frac{489918305}{1728}\sigma^2 + \frac{7787081027}{6912}\sigma^3 - \frac{2052731645}{1296}\sigma^4 - \frac{1629138643}{324}\sigma^5 + \frac{1879982900}{81}\sigma^6 + \frac{368284375}{81}\sigma^7,
\]

\[
Q = \omega_1\omega_2(\omega_1^2 - \omega_2^2)^5(4 - 25\sigma)^3(9 - 100\sigma),
\]

\[
\sigma = \omega_1\omega_2,
\]
The special case μ_d

- need to carry out normalization to terms of order six
- $D_6 = 4!H_0^4(\omega_2, \omega_1) = P/Q$

\[
P = -\frac{3105}{4} + \frac{1338449}{48}\sigma - \frac{489918305}{1728}\sigma^2 + \frac{7787081027}{6912}\sigma^3 - \frac{2052731645}{1296}\sigma^4 - \frac{1629138643}{324}\sigma^5 + \frac{1879982900}{81}\sigma^6 + \frac{368284375}{81}\sigma^7,
\]

\[
Q = \omega_1\omega_2(\omega_1^2 - \omega_2^2)^5(4 - 25\sigma)^3(9 - 100\sigma),
\]

$\sigma = \omega_1^2/\omega_2^2$.
The special case μ_d

- need to carry out normalization to terms of order six
- $D_6 = 4!H^4_0(\omega_2, \omega_1) = P/Q$

\[
P = -\frac{3105}{4} + \frac{1338449}{48}\sigma - \frac{489918305}{1728}\sigma^2 + \frac{7787081027}{6912}\sigma^3 \\
- \frac{2052731645}{1296}\sigma^4 - \frac{1629138643}{324}\sigma^5 \\
+ \frac{1879982900}{81}\sigma^6 + \frac{368284375}{81}\sigma^7,
\]

\[
Q = \omega_1\omega_2(\omega_1^2 - \omega_2^2)^5(4 - 25\sigma)^3(9 - 100\sigma),
\]

\[
\sigma = \omega_1^2\omega_2^2,
\]
Remarks

- Solve $D_4 = 0$ for σ and substitute into D_6 to get $D_6 \approx -66.6$
- Thus L_4 is stable at μ_d
- $\mu_d = 0.010913667677201$ does not appear to have any specific significance
- The significance of $\mu^* = 0.01272398874654163$ is also not clear, except that the structure of the family with common period changes from the “open” case to “bridges”
- $\mu_4 < \mu_d < \mu^* < \mu_3$. It would have been nice if $\mu_d = \mu^*$
- Instead in this way it gives rise to new research topics
Remarks

- Solve $D_4 = 0$ for σ and substitute into D_6 to get $D_6 \approx -66.6$
- Thus \mathcal{L}_4 is stable at μ_d
 - $\mu_d = 0.010913667677201$ does not appear to have any specific significance
 - The significance of $\mu^* = 0.01272398874654163$ is also not clear, except that the structure of the family with common period changes from the “open” case to “bridges”
 - $\mu_4 < \mu_d < \mu^* < \mu_3$. It would have been nice if $\mu_d = \mu^*$
- Instead in this way it gives rise to new research topics
Solve $D_4 = 0$ for σ and substitute into D_6 to get $D_6 \approx -66.6$

Thus \mathcal{L}_4 is stable at μ_d

$\mu_d = 0.010913667677201$ does not appear to have any specific significance

The significance of $\mu^* = 0.01272398874654163$ is also not clear, except that the structure of the family with common period changes from the “open” case to “bridges”

$\mu_4 < \mu_d < \mu^* < \mu_3$. It would have been nice if $\mu_d = \mu^*$

Instead in this way it gives rise to new research topics
Remarks

Solve $D_4 = 0$ for σ and substitute into D_6 to get $D_6 \approx -66.6$

Thus L_4 is stable at μ_d

$\mu_d = 0.010913667677201$ does not appear to have any specific significance

The significance of $\mu^* = 0.01272398874654163$ is also not clear, except that the structure of the family with common period changes from the “open” case to “bridges”

$\mu_4 < \mu_d < \mu^* < \mu_3$. It would have been nice if $\mu_d = \mu^*$

Instead in this way it gives rise to new research topics
Remarks

- Solve $D_4 = 0$ for σ and substitute into D_6 to get $D_6 \approx -66.6$.
- Thus \mathcal{L}_4 is stable at μ_d.
- $\mu_d = 0.010913667677201$ does not appear to have any specific significance.
- The significance of $\mu^* = 0.01272398874654163$ is also not clear, except that the structure of the family with common period changes from the “open” case to “bridges”.
- $\mu_4 < \mu_d < \mu^* < \mu_3$. It would have been nice if $\mu_d = \mu^*$.
- Instead in this way it gives rise to new research topics.
Remarks

- Solve $D_4 = 0$ for σ and substitute into D_6 to get $D_6 \approx -66.6$
- Thus \mathcal{L}_4 is stable at μ_d
- $\mu_d = 0.010913667677201$ does not appear to have any specific significance
- The significance of $\mu^* = 0.01272398874654163$ is also not clear, except that the structure of the family with common period changes from the “open” case to “bridges”
- $\mu_4 < \mu_d < \mu^* < \mu_3$. It would have been nice if $\mu_d = \mu^*$
- Instead in this way it gives rise to new research topics
Remarks to μ near μ_2

- $\mu < \mu_2$
- $\mu = \mu_2$
- $\mu > \mu_2$

D. Schmidt (University of Cincinnati)
Periodic Orbits Near L_4
November 2012 66 / 68
Remarks to μ near μ_3

$\mu < \mu_3$

$\mu = \mu_3$

$\mu > \mu_3$
References

