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Granular Mechanics and Asteroids

• A recent focus of asteroid science are the mechanics of 
granular systems under self-attraction and cohesion
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Discrete Granular Mechanics 
and Celestial Mechanics

• The theoretical mechanics of few-body systems can shed 
light on more complex aggregations and their evolution
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Fundamental and Simple Question:
What is the expected configuration for 
a collection of self-gravitating grains?
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Fundamental Concepts:

• The N-body problem:

• Mass: 
– In the Newtonian N-Body Problem each particle has a total mass 

mi modeled as a point mass of infinite density
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• Angular Momentum: 

– Mechanical angular momentum is conserved for a closed system, 
independent of internal physical processes.

– The most fundamental conservation principle in Celestial 
Mechanics.
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• Energy:

– Not necessarily conserved for a closed system
– Additional non-modeled physical effects internal to the system can 

lead to dissipation of energy (e.g., tidal forces, surface friction)
– Physically occurs whenever relative motion exists within a system 

– motivates the study of relative equilibria
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Leads to a more precise question ...

Q:  What are the minimum energy 
configurations for the Newtonian N-body 
problem at a fixed Angular Momentum?
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Leads to a more precise question ...

Q:  What are the minimum energy 
configurations for the Newtonian N-body 
problem at a fixed Angular Momentum?

A:  There are none for N ≥3.

A surprising and untenable result – all 
mechanical systems should have a minimum 

energy state...
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Sundman’s Inequality

• To investigate this we start with Sundman’s Inequality
– Apply Cauchy’s Inequality to the Angular Momentum

• Sundman’s Inequality is:
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Minimum Energy Function and 
Relative Equilibrium

• Leads to a lower bound on the energy of an N-body system by 
defining the “minimum energy function” Em (also known as the 
Amended Potential).

– Em is only a function of the relative configuration Q of an N-body system

• Theorem: Stationary values of Em are relative equilibria of the 
N-body problem at a fixed value of angular momentum (Smale, 
Arnold)
– Equality occurs at relative equilibrium
– Can be used to find central configurations and determine energetic stability
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Example:  Point Mass 2-Body 
Minimum Energy Configurations

• Point Mass 2-Body Problem: Minimum is a circular orbit 
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Point Mass N-Body Minimum 
Energy Configurations, N ≥ 3

• Point Mass 3-Body Problem:
– Relative equilibria occur at the Lagrange and Euler Solutions
– Euler solutions are always unstable ≠ minimum energy solutions
– Lagrange solutions are never minimum energy solutions 

• Point Mass N-Body Problem:
– Central configurations are never minimum energy configurations, 

c.f. proof by R. Moeckel. 
– For any Point Mass N ≥ 3 Problem, Em can always –> -∞ while 

maintaining a constant level of angular momentum

For the Point Mass N ≥ 3 Problem there are no non-
singular minimum energy configurations 

... does our original question even make sense?

13
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Non-Definite Minimum of the 
Energy Function for N ≥ 3

• Consider the minimum energy function for N=3:

– Choose the distance and velocity between P1 and (P2 , P3) to 
maintain a constant value of H.

– Choose a zero-relative velocity between (P2 , P3) and let d23 –> 0, 
forcing Em –> -∞ while maintaining H.

– Under energy dissipation, there is no lower limit on the system-
level energy until the limits of Newtonian physics are reached.
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The Role of Density

• The lack of minimum energy configurations in the Point Mass N-
body problem arises due to the infinite density of Point Masses
– The resolution of this problem is simple and physically well motivated – allow 

for finite density – but has profound consequences:

– Bodies with a given mass must now have finite size, when in contact we 
assume they exert surface normal forces and frictional forces

– Moments of inertia, rotational angular momentum, rotational kinetic energy 
and mass distribution must now be tracked in I, H, T and U, even for spheres.

– For low enough angular momentum the minimum energy configurations of an 
N-body problem has them resting on each other and spinning at a constant rate
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Finite Density (Full-Body) 
Considerations

• Energy, angular momentum and polar moment of inertia 
all generalize to the case of finite density, along with the 
Sundman Inequality (Scheeres, CMDA 2002):
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Modified Sundman Inequality

• A sharper version of the Sundman Inequality can be derived 
for finite body distributions (Scheeres, CMDA 2012):
– Define the total Inertia Dyadic of the Finite Density N-Body Problem:

– Define the angular momentum unit vector 

– The modified Sundman Inequality is sharper and defines an updated 
Minimum Energy Function
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H2  2IHT  2IT Em  Em =
H2

2IH
+ U  E

I =
NX

i=1

⇥
mi

�
r2
i U� riri

�
+ Ai · Ii · AT

i

⇤

Wednesday, December 5, 2012



D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Minimum Energy Configurations

• Theorem: For finite density distributions, all N-body 
problems have minimum energy configurations.

• Proof (Scheeres, CMDA 2012):  
– Stationary values of       are relative equilibria, and include (for 

finite densities) resting configurations. 
– For a finite value of angular momentum H, the function        is 

compact and bounded. 
– By the Extreme Value Theorem, the minimum energy function 

has a Global Minimum.

• Resolves the problem associated with minimum energy 
configurations of the Newtonian (Point Mass) N-Body 
Problem.
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... back to the original question

19

• Question: What is the Minimum Energy configuration of a finite 
density N-Body System at a specified value of Angular Momentum?

• Answer: The Minimum Value of       across all stationary 
configurations, both resting and orbital.
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Minimum Energy Configurations of 
the Spherical Full Body Problem

• For definiteness, consider the simplest change from point mass 
to finite spheres (then U is unchanged)
– For a collection of N spheres of diameter di the only change in       is to IH

• But this dramatically changes the structure of the minimum 
energy configurations... take the 2-body problem for example 
with equal size spheres, normalized to unity radius
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2-Body Problem
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Reconfiguration and Fission

23

Reconfiguration: Occurs once the 
relative resting configuration 
becomes unstable. 
For the 3BP occurs at a rotation 
rate beyond the Lagrange solution

Multiple resting configurations can exist at one angular momentum.
Resting and orbital stable configurations can exist at one angular momentum.

• As a system’s AM is increased, there are two possible 
types of transitions between minimum energy states:
– Reconfigurations, dynamically change the resting locations 
– Fissions, resting configurations split and enter orbit about each 

other
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Reconfiguration: Occurs once the 
relative resting configuration 
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For the 3BP occurs at a rotation 
rate beyond the Lagrange solution

Fission: Occurs once the relative 
resting configuration becomes 
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For the 3BP occurs at a rotation 
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Resting and orbital stable configurations can exist at one angular momentum.
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Internal Degrees of Freedom 
for Spherical Grains

• 2-Body Results: 
– Contact case has 0 degrees of freedom
– Orbit case has 1 degree of freedom

• 3-Body Results
– Contact case has 1 degree of freedom
– Contact + Orbit case has 2 degrees of freedom
– Know all of the orbit configurations

• 4-Body Results 
– Contact case has 2 degrees of freedom, multiple topologies
– Many more possible Orbit + Contact configurations
– 3-dimensional configurations
– Don’t even know precisely how many orbit configurations exist... 

but they are all energetically unstable (Moeckel)!
24
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Minimum Energy Configurations

All minimum energy states can be uniquely 
identified in the finite density 3 Body Problem
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Observations
• Evolution Regimes split into two distinct sets:

32
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Observations
• Especially Relevant for Cohesionless Systems... separates

33
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ω ω

The theory of minimum energy configurations can be extended to arbitrary 
finite density shapes, e.g. an equal density ellipsoid/ellipsoid system

Minimum energy 
configuration for small 
Angular Momentum

Minimum energy 
configuration for large 
Angular Momentum

Generalization to 
Non-Spherical Bodies
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Asteroid Itokawa’s peculiar mass distribution may “fission” when  
its rotation period < 6 hours – spin period can change due to the 
“YORP Effect”, slowly changes total angular momentum...
Body = 490 x 310 x 260 meters	

 Head = 230 x 200 x 180 meters
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Local Minimum Energy Fission Configuration

Reconfigurations and Fission Events
• When a Local Minimum reaches its reconfiguration or fission 

state it cannot directly enter a different minimum energy state
– Excess energy ensures a period of dynamics where dissipation may occur

Movie by S.A. Jacobson
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Global Minimum Energy Configuration 
at same Angular Momentum

Reconfigurations and Fission Events
• When a Local Minimum reaches its reconfiguration or fission 

state it cannot directly enter a different minimum energy state
– Excess energy ensures a period of dynamics where dissipation may occur

Movie by S.A. Jacobson
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Reconfigurations and Fission Events
• When a Local Minimum reaches its reconfiguration or fission 

state it cannot directly enter a different minimum energy state
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Summary

• Study of asteroids leads directly to study of minimum energy 
configurations of self-gravitating grains
– Only possible for bodies with finite density 

• For finite density bodies, minimum energy and stable 
configurations are defined as a function of angular momentum 
by studying the minimum energy function:

– only a function of the system configuration
– Globally minimum energy configurations are denumerable

• Simple few body systems can be fully explored
– Need theories for polydisperse grains and N >> 1
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