

Minimum Energy Configurations in the N-body Problem and the Celestial Mechanics of Granular Systems

D.J. Scheeres

Department of Aerospace Engineering Sciences The University of Colorado <u>scheeres@colorado.edu</u>

Granular Mechanics and Asteroids

• A recent focus of asteroid science are the mechanics of granular systems under self-attraction and cohesion

Granular Mechanics and Asteroids

• A recent focus of asteroid science are the mechanics of granular systems under self-attraction and cohesion

Granular Mechanics and Asteroids

• A recent focus of asteroid science are the mechanics of granular systems under self-attraction and cohesion

Motivated by Observations

All images courtesy JAXA/ISAS

All images courtesy JAXA/ISAS

All images courtesy JAXA/ISAS

Motivated by Observations

Discrete Granular Mechanics and Celestial Mechanics

• The theoretical mechanics of few-body systems can shed light on more complex aggregations and their evolution

Discrete Granular Mechanics and Celestial Mechanics

• The theoretical mechanics of few-body systems can shed light on more complex aggregations and their evolution

Fundamental and Simple Question: What is the expected configuration for a collection of self-gravitating grains?

Fundamental Concepts:

• The N-body problem:

$$m_{i}\ddot{\mathbf{r}}_{i} = -\frac{\partial U}{\partial \mathbf{r}_{i}}$$

$$i = 1, 2, \dots N$$

$$U = -\frac{\mathcal{G}}{2} \sum_{j=1}^{N} \sum_{k=1, \neq i}^{N} \frac{m_{j}m_{k}}{r_{jk}} \quad \mathbf{r}_{jk} = \mathbf{r}_{k} - \mathbf{r}_{j}$$

$$\mathbf{0} = \sum_{j=1}^{N} m_{j}\mathbf{r}_{j}$$
• Mass:

- In the Newtonian N-Body Problem each particle has a total mass m_i modeled as a point mass of infinite density

Fundamental Concepts:

• Angular Momentum:

$$\mathbf{H} = \sum_{j=1}^{N} m_j \mathbf{r}_j \times \dot{\mathbf{r}}_j$$
$$= \frac{1}{2M} \sum_{j=1}^{N} \sum_{k=1}^{N} m_j m_k \mathbf{r}_{jk} \times \dot{\mathbf{r}}_{jk} \qquad M = \sum_{j=1}^{N} m_j$$

- Mechanical angular momentum is conserved for a closed system, independent of internal physical processes.
- The most fundamental conservation principle in Celestial Mechanics.

Fundamental Concepts:

• Energy:

$$E = T + U$$

$$T = \frac{1}{2} \sum_{j=1}^{N} m_j \dot{\mathbf{r}}_j \cdot \dot{\mathbf{r}}_j$$

$$= \frac{1}{4M} \sum_{j=1}^{N} \sum_{k=1}^{N} m_j m_k \dot{\mathbf{r}}_{jk} \cdot \dot{\mathbf{r}}_{jk}$$

- Not necessarily conserved for a closed system
- Additional non-modeled physical effects internal to the system can lead to dissipation of energy (e.g., tidal forces, surface friction)
- Physically occurs whenever relative motion exists within a system
 motivates the study of relative equilibria

Q: What are the minimum energy configurations for the Newtonian N-body problem at a fixed Angular Momentum?

Q: What are the minimum energy configurations for the Newtonian N-body problem at a fixed Angular Momentum?

Q: What are the minimum energy configurations for the Newtonian N-body problem at a fixed Angular Momentum?

A: There are none for $N \ge 3$.

Q: What are the minimum energy configurations for the Newtonian N-body problem at a fixed Angular Momentum?

A: There are none for $N \ge 3$.

Q: What are the minimum energy configurations for the Newtonian N-body problem at a fixed Angular Momentum?

A: There are none for $N \ge 3$.

A surprising and untenable result – all mechanical systems should have a minimum energy state...

Sundman's Inequality

• To investigate this we start with Sundman's Inequality – Apply Cauchy's Inequality to the Angular Momentum

$$H^{2} = \frac{1}{4M^{2}} \left| \sum_{j,k=1}^{N} m_{j} m_{k} \mathbf{r}_{jk} \times \dot{\mathbf{r}}_{jk} \right|^{2} \leq \frac{1}{4M^{2}} \left(\sum_{j,k=1}^{N} m_{j} m_{k} r_{jk}^{2} \right) \left(\sum_{j,k=1}^{N} m_{j} m_{k} \dot{r}_{jk}^{2} \right) = 2IT$$

• Sundman's Inequality is:

$$H^2 \le 2IT$$

$$I = \sum_{i=1}^{N} m_i r_i^2 = \frac{1}{2M} \sum_{j,k=1}^{N} m_j m_k r_{jk}^2$$

Polar Moment of Inertia

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Minimum Energy Function and Relative Equilibrium

• Leads to a lower bound on the energy of an *N*-body system by defining the "minimum energy function" E_m (also known as the Amended Potential).

$$H^{2} \leq 2IT \qquad T = E - U$$
$$E_{m}(\mathbf{Q}) = \frac{H^{2}}{2I(\mathbf{Q})} + U(\mathbf{Q}) \leq E$$
$$\mathbf{Q} = \{\mathbf{r}_{ij} : i, j = 1, 2, \dots, N\}$$

 $-E_m$ is only a function of the relative configuration **Q** of an *N*-body system

- Theorem: Stationary values of E_m are relative equilibria of the N-body problem at a fixed value of angular momentum (Smale, Arnold)
 - Equality occurs at relative equilibrium
 - Can be used to find central configurations and determine energetic stability

Example: Point Mass 2-Body Minimum Energy Configurations

• Point Mass 2-Body Problem: Minimum is a circular orbit

Point Mass *N*-Body Minimum Energy Configurations, $N \ge 3$

- Point Mass *3*-Body Problem:
 - Relative equilibria occur at the Lagrange and Euler Solutions
 - Euler solutions are always unstable ≠ minimum energy solutions
 - Lagrange solutions are *never* minimum energy solutions
- Point Mass *N*-Body Problem:
 - Central configurations are *never* minimum energy configurations,
 c.f. proof by R. Moeckel.
 - For any Point Mass $N \ge 3$ Problem, E_m can always -> - ∞ while maintaining a constant level of angular momentum

For the Point Mass N ≥ 3 Problem there are **no** nonsingular minimum energy configurations ... does our original question even make sense?

Non-Definite Minimum of the Energy Function for $N \ge 3$

• Consider the minimum energy function for N=3:

$$E_m = \frac{H^2}{\frac{m}{3} \left[d_{12}^2 + d_{23}^2 + d_{31}^2 \right]} - \mathcal{G}m^2 \left[\frac{1}{d_{12}} + \frac{1}{d_{23}} + \frac{1}{d_{31}} \right]$$

- Choose the distance and velocity between P_1 and (P_2, P_3) to maintain a constant value of H.
- Choose a zero-relative velocity between (P_2, P_3) and let $d_{23} \rightarrow 0$, forcing $E_m \rightarrow -\infty$ while maintaining *H*.

– Under energy dissipation, there is no lower limit on the systemlevel energy until the limits of Newtonian physics are reached. 14

Non-Definite Minimum of the Energy Function for $N \ge 3$

• Consider the minimum energy function for N=3:

$$E_m = \frac{H^2}{\frac{m}{3} \left[d_{12}^2 + d_{23}^2 + d_{31}^2 \right]} - \mathcal{G}m^2 \left[\frac{1}{d_{12}} + \frac{1}{d_{23}} + \frac{1}{d_{31}} \right]$$

- Choose the distance and velocity between P_1 and (P_2, P_3) to maintain a constant value of H.
- Choose a zero-relative velocity between (P_2, P_3) and let $d_{23} \rightarrow 0$, forcing $E_m \rightarrow -\infty$ while maintaining H.

$$\begin{array}{ccc} P_3 & P_2 & & d_{12} \sim d_{13} & & P_1 \\ 0 & & & & & \\ d_{23} \rightarrow 0 & & & & \\ \end{array}$$

– Under energy dissipation, there is no lower limit on the systemlevel energy until the limits of Newtonian physics are reached. 14

The Role of Density

- The lack of minimum energy configurations in the Point Mass *N*-body problem arises due to the infinite density of Point Masses
 - The resolution of this problem is simple and physically well motivated *allow* for finite density – but has profound consequences:

- Bodies with a given mass must now have finite size, when in contact we assume they exert surface normal forces and frictional forces
- Moments of inertia, rotational angular momentum, rotational kinetic energy and mass distribution must now be tracked in *I*, *H*, *T* and *U*, even for spheres.
- For low enough angular momentum the minimum energy configurations of an *N*-body problem has them resting on each other and spinning at a constant rate

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Modified Sundman Inequality

- A sharper version of the Sundman Inequality can be derived for finite body distributions (*Scheeres, CMDA 2012*):
 - Define the total Inertia Dyadic of the Finite Density *N*-Body Problem:

$$\mathbf{I} = \sum_{i=1}^{N} \left[m_i \left(r_i^2 \mathbf{U} - \mathbf{r}_i \mathbf{r}_i \right) + A_i \cdot \mathbf{I}_i \cdot A_i^T \right]$$

– Define the angular momentum unit vector $\hat{\mathbf{H}}$

$$I_H = \hat{\mathbf{H}} \cdot \mathbf{I} \cdot \hat{\mathbf{H}}$$

 The modified Sundman Inequality is sharper and defines an updated Minimum Energy Function

$$H^2 \le 2I_H T \le 2IT$$

$$E_m \le \mathcal{E}_m = \frac{H^2}{2I_H} + U \le E$$

Modified Sundman Inequality

- A sharper version of the Sundman Inequality can be derived for finite body distributions (*Scheeres, CMDA 2012*):
 - Define the total Inertia Dyadic of the Finite Density *N*-Body Problem:

$$\mathbf{I} = \sum_{i=1}^{N} \left[m_i \left(r_i^2 \mathbf{U} - \mathbf{r}_i \mathbf{r}_i \right) + A_i \cdot \mathbf{I}_i \cdot A_i^T \right]$$

– Define the angular momentum unit vector $\hat{\mathbf{H}}$

$$I_H = \hat{\mathbf{H}} \cdot \mathbf{I} \cdot \hat{\mathbf{H}}$$

 The modified Sundman Inequality is sharper and defines an updated Minimum Energy Function

$$H^2 \le 2I_H T \le 2IT$$

$$E_m \le \mathcal{E}_m = \frac{H^2}{2I_H} + U \le E$$

Minimum Energy Configurations

- Theorem: For finite density distributions, all N-body problems have minimum energy configurations.
- Proof (*Scheeres*, *CMDA 2012*):
 - Stationary values of \mathcal{E}_m are relative equilibria, and include (for finite densities) resting configurations.
 - For a finite value of angular momentum H, the function \mathcal{E}_m is compact and bounded.
 - By the Extreme Value Theorem, the minimum energy function \mathcal{E}_m has a Global Minimum.
- Resolves the problem associated with minimum energy configurations of the Newtonian (Point Mass) *N*-Body Problem.

... back to the original question

- **Question:** What is the Minimum Energy configuration of a finite density *N*-Body System at a specified value of Angular Momentum?
- Answer: The Minimum Value of \mathcal{E}_m across all stationary configurations, both <u>resting</u> and <u>orbital</u>.

$$\mathcal{E}_m(\mathbf{Q}_F) = \frac{H^2}{2I(\mathbf{Q}_F)} + U(\mathbf{Q}_F) \le E$$
$$\mathbf{Q}_F = \{\mathbf{r}_{ij} | r_{ij} \ge (d_i + d_j)/2, i, j = 1, 2, \dots, N\}$$

Relative Equilibrium

Stability

 $\delta^2 \mathcal{E} = \delta \mathbf{Q} \cdot \frac{\partial^2 \mathcal{E}}{\partial \mathbf{Q}^2} \cdot \delta \mathbf{Q} > 0$

$$\delta \mathcal{E} = \frac{\partial \mathcal{E}}{\partial \mathbf{Q}} \cdot \delta \mathbf{Q} \ge 0$$
$$\forall \text{ Admissible } \delta \mathbf{Q}$$

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Minimum Energy Configurations of the Spherical Full Body Problem

- For definiteness, consider the simplest change from point mass to finite spheres (then *U* is unchanged)
 - For a collection of N spheres of diameter d_i the only change in \mathcal{E}_m is to I_H

$$I_H = \frac{1}{10} \sum_{i=1}^{N} m_i d_i^2 + \sum_{i=1}^{N} m_i r_i^2$$

• But this dramatically changes the structure of the minimum energy configurations... take the 2-body problem for example with equal size spheres, normalized to unity radius

$$E_m = \frac{h^2}{2d^2} - \frac{1}{d}$$
 versus $\mathcal{E}_m = \frac{h^2}{2(0.4+d^2)} - \frac{1}{d}$

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Minimum Energy Configurations of the Spherical Full Body Problem

- For definiteness, consider the simplest change from point mass to finite spheres (then *U* is unchanged)
 - For a collection of N spheres of diameter d_i the only change in \mathcal{E}_m is to I_H

$$I_H = \left(\frac{1}{10}\sum_{i=1}^N m_i d_i^2\right) + \sum_{i=1}^N m_i r_i^2$$

• But this dramatically changes the structure of the minimum energy configurations... take the 2-body problem for example with equal size spheres, normalized to unity radius

$$\mathcal{E}_m = \frac{h^2}{2d^2} - \frac{1}{d}$$
 versus $\mathcal{E}_m = \frac{h^2}{2(0.4+d^2)} - \frac{1}{d}$

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

- As a system's AM is increased, there are two possible types of transitions between minimum energy states:
 - Reconfigurations, dynamically change the resting locations
 - Fissions, resting configurations split and enter orbit about each other

Reconfiguration: Occurs once the relative resting configuration becomes unstable. *For the 3BP occurs at a rotation rate beyond the Lagrange solution*

Multiple resting configurations can exist at one angular momentum. Resting and orbital stable configurations can exist at one angular momentum.

Reconfiguration: Occurs once the relative resting configuration becomes unstable. *For the 3BP occurs at a rotation rate beyond the Lagrange solution*

Multiple resting configurations can exist at one angular momentum. Resting and orbital stable configurations can exist at one angular momentum.

Reconfiguration: Occurs once the relative resting configuration becomes unstable. *For the 3BP occurs at a rotation rate beyond the Lagrange solution*

Multiple resting configurations can exist at one angular momentum. Resting and orbital stable configurations can exist at one angular momentum.

Reconfiguration: Occurs once the relative resting configuration becomes unstable. *For the 3BP occurs at a rotation rate beyond the Lagrange solution* Fission: Occurs once the relative resting configuration becomes unstable.

For the 3BP occurs at a rotation rate beyond the Euler solution

Multiple resting configurations can exist at one angular momentum. Resting and orbital stable configurations can exist at one angular momentum.

Reconfiguration: Occurs once the relative resting configuration becomes unstable. *For the 3BP occurs at a rotation rate beyond the Lagrange solution* Fission: Occurs once the relative resting configuration becomes unstable.

For the 3BP occurs at a rotation rate beyond the Euler solution

Multiple resting configurations can exist at one angular momentum. Resting and orbital stable configurations can exist at one angular momentum.

Internal Degrees of Freedom for Spherical Grains

- 2-Body Results:
 - Contact case has 0 degrees of freedom
 - Orbit case has 1 degree of freedom
- 3-Body Results
 - Contact case has 1 degree of freedom
 - Contact + Orbit case has 2 degrees of freedom
 - Know all of the orbit configurations
- 4-Body Results
 - Contact case has 2 degrees of freedom, multiple topologies
 - Many more possible Orbit + Contact configurations
 - 3-dimensional configurations
 - Don't even know precisely how many orbit configurations exist... but they are all energetically unstable (Moeckel)!

All minimum energy states can be uniquely identified in the finite density 3 Body Problem

Static & Variable Resting Configurations

Mixed Configurations Orbiting Configurations

Static Rest Configurations 1, 2, 5

Static Rest Configurations 1, 3, 4

Wednesday, December 5, 2012

 \mathcal{E}

Observations

• Evolution Regimes split into two distinct sets:

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Observations

• Evolution Regimes split into two distinct sets:

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Observations

• Especially Relevant for Cohesionless Systems... separates

Generalization to Non-Spherical Bodies

The theory of minimum energy configurations can be extended to arbitrary finite density shapes, e.g. an equal density ellipsoid/ellipsoid system

ω

Minimum energy configuration for small Angular Momentum

Minimum energy configuration for large Angular Momentum

Body = 490 x 310 x 260 *meters* **Head** = 230 x 200 x 180 *meters*

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Body = 490 x 310 x 260 *meters* **Head** = 230 x 200 x 180 *meters*

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Body = 490 x 310 x 260 *meters* **Head** = 230 x 200 x 180 *meters*

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Body = 490 x 310 x 260 *meters* **Head** = 230 x 200 x 180 *meters*

- When a Local Minimum reaches its reconfiguration or fission state it cannot directly enter a different minimum energy state
 - Excess energy ensures a period of dynamics where dissipation may occur

Local Minimum Energy Fission Configuration

- When a Local Minimum reaches its reconfiguration or fission state it cannot directly enter a different minimum energy state
 - Excess energy ensures a period of dynamics where dissipation may occur

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

- When a Local Minimum reaches its reconfiguration or fission state it cannot directly enter a different minimum energy state
 - Excess energy ensures a period of dynamics where dissipation may occur

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

- When a Local Minimum reaches its reconfiguration or fission state it cannot directly enter a different minimum energy state
 - Excess energy ensures a period of dynamics where dissipation may occur

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

- When a Local Minimum reaches its reconfiguration or fission state it cannot directly enter a different minimum energy state
 - Excess energy ensures a period of dynamics where dissipation may occur

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

Summary

- Study of asteroids leads directly to study of minimum energy configurations of self-gravitating grains
 - Only possible for bodies with finite density
- For finite density bodies, minimum energy and stable configurations are defined as a function of angular momentum by studying the minimum energy function:

$$\mathcal{E}_m = \frac{H^2}{2I_H} + U$$

- only a function of the system configuration
- Globally minimum energy configurations are denumerable
- Simple few body systems can be fully explored
 - Need theories for polydisperse grains and N >> 1

Movie by P. Sanchez

D.J. Scheeres, A. Richard Seebass Chair, University of Colorado at Boulder

