"Detection and dynamics multi-planet systems"

Alexandre C.M. Correia MCCE - Observatoire Paris Universidade de Aveiro Jacques Laskar

Serra Negra SP, 26-30 novembro 2012 XVI Colóquio Brasileiro de Dinâmica Orbital

Radial velocity [km/s]

-33.3

-33.35 -

JD-2400000 [days]

Param.	[unit]	þ	c	q
Date	[CII]		2 455 000.00 (fixe	(pa
V(KECK)	[km/s]		0.0130 ± 0.000	4C
P (HAKPS)	[dav]	61.067 + 0.011	30.258 + 0.009	1.93785 + 0.00002
~	[deg]	35.61 ± 0.14	158.62 ± 0.80	29.94 ± 3.30
9	ō	0.029 ± 0.001	0.266 ± 0.003	0.139 ± 0.032
3	[deg]	275.52 ± 2.67	275.26 ± 1.25	170.60 ± 15.52
K	[m/s]	212.24 ± 0.33	86.15 ± 0.40	6.67 ± 0.26
.1	[deg]	48.93 ± 0.97	48.07 ± 2.06	50 (fixed)
S S	[deg]	0 (fixed)	-2.32 ± 0.94	0 (fixed)
a ₁ sin i	[10 ⁻³ AU]	1.19	0.23	1.2×10^{-3}
f(M)	[10 ⁻⁹ M]	60.41	1.79	5.8×10^{-5}
Msini	[W]	1	I	6.3
M	[M _{hu}]	2.64	0.83	1
a	[AU]	0.211	0.132	0.021
Nmeas			207	
Span	[day]		4103	
12			1.37	
rmS(KECK)	[m/s]		4.25	
TTMS(HARPS)	[m/s]		1.80	

am.	[unit]	Orbit 1 (planet)	Orbit 2 (binary)
	IAUI	2.6 ± 0.1	21.00 ± 0.86
	1	0.48 ± 0.02	0.42 ± 0.03
	[deg]	93.2 ± 3.0	241.9 ± 3.1
	[deg]	349.1 ± 1.80	121 ± 45
	[deg]	2	79.8 ± 0.1
	[deg]	ż	116.8 ± 0.7
		$2.98/\sin I_1$	472

rameter	[unit]	HD 10180 b	HD 10180 c	HD 10180 d	HD 10180 e	HD 10180 f	HD 10180 g	HD 10180
och	[BJD] [deg] [km s ⁻¹]			2,454	90 (fixed) 53014(+0.0004	(bead)		
	[days]	1.177662	5.75962	16.3570	49.747	122.72	602	2229
	[deg]	142	29.4	99.4	20.9	237.8	253	317.6
		0.0 (fixed)	0.077	0.142	0.061	0.127	0.0 0.0	0.145
	[deg]	0.0	-41	-51	1/1	-37	0.0	-166
	[ms ⁻¹]	(fixed) 0.82	(¹⁸¹) 4.53	(16) 292	(±60) 4.26	(²⁰⁹) 2.95	(fixed) 1.55	(±58) 3.11
	12 · · · ·	(±0.14)	(±0.15)	(±0.16)	(±0.18)	(±0.18)	(±0.22)	(±0.22)
ini	[<i>W</i>]	1.40 (±0.25)	13.16 (±0.59)	11.91 (±0.75)	25.3 (±1.4)	23.5 (±1.7)	21.3 (±3.2)	65.2 (±4.6)
	[NN]	0.02226 (±0.00038)	0.0641 (±0.0010)	0.1286 (±0.0021)	0.2695 (±0.0048)	0.4924 (±0.0083)	1.422 (±0.030)	3.40 (±0.12)
	[days] [ms ⁻¹]				190 2428 1.27 1.23			

5 k2 ~ krlk tidal dissipation 5 21

Lovis et al. (A&A 2010) Laskar, Boué, Correia, 2012

 $\chi_R^2 = R \left(u_1^2 + u_2^2 \right)$

arameter	[unit]	HD 10180 b	HD 10180 c	HD 10180 d	HD 10180 e	HD 10180 f	HD 10180 g	HD 101801
Spoch	[BJD] [deg] [km s ⁻¹]			35.	454,000.0 (fixed 90 (fixed) 52981(±0.0001	1) 2)		
0	[days]	1.17768	5.75979	16.3579	49.745	122.76	601.2	2222
		(±0.00010)	(±0.00062)	(±0.0038)	(±0.022)	(±0.17)	(±8.1)	(167)
	[deg]	188	238.5	196.6	102.4	251.2	321.5	235.7
		(±13)	(±2.3)	(±3.8)	(±2.4)	(±3.6)	(±9.9)	(1 (0,0)
		0.0000	0.045	0.088	0.026	0.135	0.19	0.080
		(±0.0025)	(±0.026)	(± 0.041)	(±0.036)	(±0.046)	(± 0.14)	(±0.070)
	[deg]	39	332	315	166	332	347	174
		(±78)	(±43)	(±33)	(±110)	(±20)	(±49)	(±74)
X	[ms-1]	0.78	4.50	2.86	4.19	2.98	1.59	3.04
	a G	(±0.13)	(±0.12)	(±0.13)	(±0.14)	(±0.15)	(±0.25)	(±0.19)
nsini	[<i>W</i>]	1.35	13.10	11.75	25.1	23.9	21.4	64.4
		(±0.23)	(±0.54)	(±0.65)	(±1.2)	(±1.4)	(±3.4)	(±4.6)
	[AU]	0.02225	0.0641	0.1286	0.2699	0.4929	1.422	3.40
		(±0.00035)	(±0.0010)	(±0.0020)	(±0.0042)	(±0.0078)	(±0.026)	(±0.11)
Vmcas	10				190			
Span	[days]				2428			
sm	[ms ⁻¹]				1.28			
5					1.24			

Conclusions:	 Most of the time, a Keplerian fit is sufficient for the determination of the orbits. In all cases, a Keplerian fit <u>is</u> the first approximation. 	 Multi-planet systems are very common, very interesting, but <u>hard to disentangle</u> from observational data. 	 Better determinations of the orbital parameters of a system can be achieved when <u>dynamical considerations are taken</u> <u>into account</u> during the fitting procedure. 	 For systems that appear to be unstable, specific studies need to be made. Up to now, the solution never simple. 	 Radial velocities alone can fully determine the architecture of multi-planet systems without the input from <u>astrometry</u> or <u>transits</u>. 	 Dynamical studies of these systems can help the observations when searching for additional planets in the system.